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Abstract—Commercial Systems-on-a-Chip (SoC) have grown
more abundant in recent years, including in space applications.
This has led to the need to test SoCs in radiation environments,
which is difficult due to their inherent complexity. In this work
we present two complementary approaches to testing digital SoC
devices—a bare metal approach and an operating system based
approach—and discuss their advantages and disadvantages. Ex-
perimental data collected using these two methods in September
2021 from Los Alamos Neutron Science Center (LANSCE) on
the Xilinx UltraScale+ MPSoC is presented and discussed.

Index Terms—COTS, MPSoC, neutron testing, seu, single event
upset, SoC, system on a chip, Xilinx

I. INTRODUCTION

COMMERCIAL Systems-on-a-Chip (SoCs) devices have
grown rapidly in computational capability, logic density,

and I/O bandwidth. These devices contain multiple processing
cores, multi-level caches, support for multiple I/O standards,
and even integrated programmable logic for custom logic
functions. These complex SoCs are used for a wide variety of
applications that require high computational performance and
low power requirements. The computational performance of
these modern commercial off-the-shelf (COTS) SoC devices
are attractive in many space applications that must perform
increasingly complex computations with limited power avail-
ability. A number of projects have demonstrated the benefits
of using these complex SoC devices in spacecraft applica-
tions [1]–[4].

Although these heterogeneous commercial SoC systems
provide significant computing power for space-based appli-
cations, they are subject to the ionizing radiation found in
space environments. This radiation may cause a variety of
negative effects on the device that may limit its use in such
environments. Of particular concern are single-event effects
(SEE) such as single-event upsets (SEU) and single-event
transients (SET) that cause non-destructive changes to the state
of the SoC system. Because these systems contain multiple
processors, multiple cache and scratch pad memories, and
other components that contain a large amount of state, they
are highly susceptible to single-event induced failures. Before
using such devices in a radiation environment, the various
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SEE failure modes and failure rates need to be understood
and measured.

Identifying the failure modes and rates of these complex
SoCs with radiation testing is challenging. Creating the soft-
ware system for an application to operate on a complex SoC
for a radiation test is more complex than a single program
running on a single processor. Further, failures observed at
a radiation test on the SoC may be highly dependent on the
way the SoC is configured and the application running in the
processors. System failures observed in a radiation test with
one application may not occur at the same rate or even at all
for another SoC application. It can be difficult to generalize
the radiation test results from one application example for
use in estimating the failure rate of a different application.
When radiation-induced failures do occur in these systems, it
is often difficult to isolate the location of the failure and thus
understand how other applications running on the SoC may
fail in the future.

A long-term goal of our research is to investigate radiation
testing methodologies that would provide greater observability
into SoC failure mechanisms, with the ability to better locate
the source of failures within complex SoCs that may have
many different sub-components. We believe that as these
techniques mature, the radiation test data will be better suited
to be generalized and used to estimate the failure rate of
other applications. Ideally, system designers will be able to
more accurately predict how their individual application may
perform, given the types of SoC resources it relies upon.

This work takes a step toward that overall goal by focusing
on two techniques that provide better understanding of SoC
behavior in high radiation environments. First, we seek to
identify the failure rate (cross section) of several individual
components of the SoC in isolation of the system. Second,
we seek to organize our radiation testing in such a way that
allows for measurements on multiple components at the same
time to reduce testing time.

To explore and evaluate these approaches, we have de-
veloped two experimental systems, with differing approaches
to gaining observability into the per-component failure rates.
The first system utilizes a low-level, component-oriented ap-
proach implemented on a bare metal system (i.e., no operating
system), while the second system is a high-level, operating
system-based approach implemented with the Linux operating
system. Both SoC radiation test approaches were applied to
the Xilinx MPSoC device at Los Alamos Neutron Science
Center (LANSCE). The radiation test results show that both
approaches measure the neutron cross sections of several
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components within the SoC with similar results but using very
different methods. The data is analyzed in Section VI and the
similarity of the cross sections is emphasized in Sections VI-D
and VI-E. The relative strengths and weaknesses of each
approach will be described along with the individual testing
results.

II. BACKGROUND

In devices as complicated as an SoC, there are a variety of
different components that could fail in a radiation environment.
Each component of the system has a unique blend of suscep-
tibility to radiation and criticality for the system as a whole.
To fully understand how an SoC will behave in a radiation
environment, the behavior of each of the components must
also be understood, as well as the interaction between them.
However, the interactions between components can make it
difficult to ascertain the individual characteristics of each
component. For example, if a piece of software performs a
memory read, and the resulting data is incorrect, was the
problem in the memory storage, the memory controller, the
cache, or the CPU? A fault in any one of those components
may appear similarly. Being able to isolate these differences
is a major goal of the various methodologies that we present.
This is different than merely creating a cross section for the
entire chip, as is often done for processors (see Section II-B).
Instead, our methodologies attempt to characterize the various
components and aspects of the SoC and develop a cross section
for each one.

Most research that has been done on radiation response of
SoCs has focused on a single aspect of the SoC, such as a
processor, a memory, an embedded FPGA, etc. [5]–[7]. On
occasion, multiple aspects of the SoC are tested, but this is
typically best viewed as concurrent independent tests rather
than a single comprehensive test [8]. Such a test—a single
test infrastructure that could test different aspects of an SoC—
offers a number of potential benefits, such as more systematic
testing of the entire SoC and reduced beam time (since all
components are tested together, rather than in different tests).

A. Cache Testing

Caches are common in SoC devices and are used to hide
the latency of memory accesses by storing strategic, quick-to-
access copies of values that are likely to be used soon. These
caches are valuable components to test because they comprise
a sizeable amount of the physical area that might experience
an SEU.

Several cache-centric radiation tests have been done on
various systems. In [9], the authors induce cache conflicts
through intentionally large inputs that will not fit inside the
device’s caches, noting the rates of errors such as Linux kernel
panic events. Another prior work, [10], uses the RAMINDEX
system register on various ARM processors to perform live
cache inspection. They use these observations to identify
and visualize the system caches’ general behavior and access
patterns.

Work similar to ours is presented in [11], [12], where
they measure cache upsets through indirect, memory access

patterns. We present a novel technique that uses a direct
cache access. More detail on the differences is discussed in
Section III-1.

B. Processor Testing

As expected due to their prevalence, processors of many
varieties have been well studied in radiation environments
[13]–[20]. These tests primarily comprise coming up with
some kind of benchmark or computation to be run repeatedly
while in the presence of radiation. Any failure in the bench-
marks is attributed to radiation and is included in the total
failure count for either the processor or the application.

While this approach is beneficial for understanding how the
system may behave under a real computational load, they do
not supply much information regarding how individual pieces
of underlying hardware respond to radiation, and often work-
loads are CPU-centric, without exercising many specialized
hardware modules. While our work still does incorporate a
traditional approach of running a benchmark to stress the
CPUs of our DUT, it is only one piece of a larger test
framework that is designed to exercise a larger variety of SoC
components.

C. Xilinx MPSoC Device

The Zynq Ultrascale+ MPSoC chip from Xilinx [21] was
chosen to be our device under test (DUT) since it is a
modern SoC with considerable complexity. It is a 16nm FinFet
chip with four ARM Cortex-A53 application processing units
(APU), two Cortex-R5F real-time processing units (RPU), an
ARM Mali-400 MP2 GPU, L1 and L2 caches, several RAMs,
FPGA fabric, and many specialized hardware modules, as
shown in Figure 1.

Fig. 1. Zynq MPSoC Block Diagram [22]

The caches are integrated with each of its four application
processor cores. Each of these cores has its own L1 data and
instruction caches that are each 32KiB in size, along with
an associated tag RAM. These L1 caches are supported by
a shared L2 cache, which is in turn supported by the main
memory via a DDR controller. Each processor core also has
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a 512-entry translation lookaside buffer (TLB) [21]. Other
components, such as the On-Chip Memory (OCM), DMA,
FPGA, IO, etc. are independent and can be controlled by any
of the processors.

While this chip has been studied in radiation environments
before [5]–[8], [23], the research on this chip has generally
focused on a specific aspect of the chip, rather than the “SoC”
nature of the chip. The response of the Ultrascale+ FPGA
fabric of the device has been reported in [6], [7], [23]. Other
works have also focused on the APU processing cores and
using the DUT to explore software reliability techniques [17],
[18]. Xilinx has shown results on the MPSoC from a propri-
etary tool called the System Validation Tool (SVT), which
runs randomized test vectors through the system [5], [24];
however, the tool’s goal is to report a single cross section
for the device, rather than studying the failure mechanisms of
individual components.

III. COMPONENT BASED TESTING METHODOLOGY

The first method we explored is a component-based, bare
metal approach. Components of an SoC are typically all
connected to and controllable from the software processor,
usually via the memory bus and memory mapped registers.
Our technique in this approach is to create test code that runs
on the processor and exercises the functionality of several
SoC components, as individually as possible. By using bare
metal code, we have direct access to device registers, giving
us a high-level of control over each component, increasing the
ability of the tests to isolate the radiation characteristics of a
single component.

While tests for each component need to be relatively in-
dependent, that does not negate the possibility of running
multiple component tests together. Non-interfering component
tests can be collected and run one after another in a “round-
robin” fashion. In other words, each test has the opportunity
to run through its test. Once all tests have finished a single
iteration, the process is repeated, as can be seen in Figure 2.
(i.e., repeatedly going through the list of tests). Running these
tests together increases the amount of information that can be
collected on the SoC, while still maintaining the isolation of
the individual components.

Fig. 2. Round-Robin Component Scheduling

For our experiment, we developed independent tests for
the L1 caches, configuration RAM (CRAM), Advanced En-
cryption Standard (AES) and Secure Hash Algorithm (SHA)
acceleration hardware (labeled as Crypto), the CPU (running
matrix multiplication, a compute-heavy application, labeled as
’Matrix’), OCM, DMA, GPIO, as well as power monitoring

code. The cache test was separated into its own executable
on a different board, but all the other tests were combined
into a single executable that cycled through the tests in a
round-robin fashion, as shown in Figure 2. This process was
continued indefinitely, until an error was detected. Once an
error was detected, the test was allowed to continue for a short
amount of time, to see if more upsets occurred. Then the board
was power-cycled and the test was started over. An exception
to this was for upsets in the CRAM, because they occurred
frequently and had no effect on any of the other components.

It is worth noting that while these tests are run in sequence,
we expect that some components tests will accumulate errors
for the entire time frame. For example, while other tests
are executing, memory upsets will continue to accumulate
in the OCM and CRAM, and when the round-robin testing
process returns to these tests, the upsets will be detected.
This allows for potentially greater data collection than if these
tests were strictly run independently. However, other tests such
as the matrix multiplication (CPU) test, Crypto and DMA,
primarily exercise their modules only while running their test.
In such cases we anticipate if these modules were tested more
often, more upsets would be detected. Furthermore, some of
these modules, such as the Crypto and DMA, can be run
asynchronously, meaning it would be possible to continue
with testing other components while they executed, potentially
increasing the amount of data that could be collected. Unfor-
tunately we did not explore this approach in this work, and it
will need to be investigated in the future.

This overlapping effect offered by the round-robin
component-based approach is different than other approaches
that may execute different programs in sequence, such as
the work in [8], that executed different software executables
in sequence to test different component failure rates. While
our approach offers the benefit of collecting more upset data
in less time, there is always a concern with how failures
in one component may trigger failures in another. However,
such cross-component failures may also be triggered when
attempting to test one component in isolation, so future work
will likely be required to further investigate this, and improve
our methodologies.

It should also be noted that our previously described round-
robin testing approach runs all of the code on one CPU core.
This includes the CPU-specific matrix multiplication test that
is described later in this section. While the DUT contains four
CPU cores, we have not yet expanded our test framework
to operate on multiple cores, and instead chose to focus on
supporting a variety of components, rather than multiple CPU
cores. In the future we hope to leverage additional cores to
conduct more testing in parallel. Such an experiment may
require additional exploration to understand how interactions
between CPU cores may affect accumulation of error rates.

The following is a description of the various component
tests that we chose to use, as well as a discussion of possible
variations

1) Caches: Our cache test creates an on-DUT, a posteriori
golden copy of initial cache contents through direct reads
and then performs DUT-driven, mid-irradiation checks against
current cache contents to detect upsets [25]. This was in
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contrast to prior works that approximate cache upset rates
through simulation and fault injection or to those that measure
cache upsets through indirect, a priori memory access patterns,
such as [11], [12]. To do this, software running on each
APU core directly read the caches and compared them against
a golden copy. Detected differences were logged and sent
sequentially from the individual processors to the experiment’s
host computer. (More details on the experimental setup can
be found in Section V.) To allow the other methods to run
independently and with their boards’ caches enabled, this bare-
metal cache test ran on a dedicated board.

This straightforward approach was made possible by the use
of co-processing registers of the ARM Cortex A53 processors
(CP15 registers) that allow access to the cache by way, set,
and offset via platform-specific assembly instructions (see [26],
Chapter 6. Level 1 Memory System) (previous work such
as [11], [12] had to use indirect methods to obtain cache
data). A golden copy of the contents of each APU processor’s
L1 data cache, data tag RAM, and TLB memories were
stored in system memory at runtime by first disabling the
caches and then reading the values at each cache location
directly. Because our DUT uses Cortex-A53 processors, our
implementation used AArch64 instructions to write encoded
locations to dedicated system registers, which in turn placed
current cache values into readable locations[26]. These direct
reads continued throughout the test to compare current values
against the golden copy’s value for that location. When the
current value and the golden copy’s value disagreed, the
difference was logged, and the board was reprogrammed to
restart the test program [25].

2) RAM: As noted in Section II-C, the MPSoC has a variety
of SRAM memories, including the on-chip memory (OCM),
tightly-coupled memory (TCM), and CRAM [21].

While the OCM and TCM are general purpose memories,
the CRAM is the memory used to store the configuration of the
FPGA fabric of the chip and is not designed to be accessed
regularly. In fact, it is not part of the memory space of the
processors at all and is only accessible through the processor
configuration-access port (PCAP) interface [21]. In order to
access the CRAM, we used a modification of the PCAP driver
described in [8], [27].

A variety of methods can be used to test a RAM:
1) Initialization: The contents of the RAM are homoge-
neously initialized to a known state. Any portion of the RAM
contents can then be easily checked for changes.
2) Golden Copy: A copy of the RAM contents can be created,
regardless of the value, and be placed in a different location,
where it will not get corrupted. The RAM contents can then
be compared against the golden copy at any point during the
test.
3) Error Detection Algorithms: A variety of error detection
algorithms exist (such as a cyclic rule check (CRC)) that allow
for large chunks of memory to be tested for errors at a time.
However, some algorithms may only report on the existence
of errors and not their location in the memory.
4) Built-in Error Detection: Some RAMs have built-in error
detection and correction. Typically, when the RAM detects an
error, it will generate a system interrupt.

For our OCM test, we used a combination of Initialization
and Built-in Error Detection. For our CRAM test, we used
the Golden Copy method and stored a copy of the CRAM
in DDR memory. While our test framework was set up to
use these techniques, unfortunately our test code had a fatal
bug that went unnoticed during our experiments: our interrupt
handling code caught the upset event, but failed to report
that it occurred. It did run code to correct the upsets, but
unfortunately we had no observability that this was happening,
so we were not able to collect data on these memory upsets.

3) CPUs / Computation: Testing of CPUs in a radiation
environment is a well studied area with a variety of possible
techniques (see Section II-B). A common option is to run a
compute-heavy benchmark and monitor the correctness of the
computed result. We followed this pattern and had the CPU
perform a 125x125 matrix multiplication and an element-by-
element division and exponentiation.

While this tests the memory controller, cache, etc. in ad-
dition to the CPU, it is a fair approximation of normal work
loads, even compared to other component tests. For example,
as described above in Section III-2, to test the CRAM the
golden copy must be read from memory, using the memory
system.

4) Cryptographic Acceleration: The MPSoC has hardware
dedicated to accelerating the Advanced Encryption Standard
(AES) and Secure Hash Algorithms (SHA), common algo-
rithms in cryptography [21]. To test this functionality, we pre-
generated a random array that was first passed through the
AES accelerator and then the SHA accelerator. The correct
hash of the encrypted data was pre-computed and was com-
pared against the calculated answer.

5) DMA: In order to test the DMA, a section of memory
was initialized which was then copied to a different location
using the DMA core. Afterwards, the two memory regions
were compared to look for differences. Any differences are
assumed to be induced because of the DMA hardware.

Similar to the CPU test in Section III-3, this will also test
the memory controller, and so is not 100% isolated. However,
this is how the DMA actually gets used, and still produces
valuable data.

6) Considerations and Issues: Our bare metal component-
based approach does present a few potential problems. One of
these is that the code and CPU used to test the components is
in fact subject to radiation-induced faults itself. This has the
potential to completely crash the CPU or cause the software
to fail, depending on the location of the fault. However, when
such a catastrophic event occurs, the test executable stops re-
porting information, which can be detected and made to trigger
a system reset. Unfortunately in this case, the data on the fault
that led to failure will be lost. Our experiments indicate that
this happens relatively infrequently on the MPSoC compared
to the amount of other observed upsets.

Even when the software does not crash, it does not guarantee
that the component tests performed 100% correctly. Any result
that indicates a fault in a component must be analyzed to
ensure that it was truly caused by a fault in the component
and not the controlling software/CPU. For example, a reported
DMA failure may actually be the result of a CPU upset while
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running the DMA test code. In these cases, additional data
collection may be necessary to distinguish between the two
types of events. Alternatively, it may be possible to subtract the
cross section of the CPU in determining per-component cross
sections. This type of analysis was unfortunately not included
in our experiments, and future work would be necessary to
explore approaches to disambiguate these events. However,
the failure rate of our DUT’s CPU was very low, so while the
possibility of a false interpretation of radiation induced faults
is certainly possible, we believe it would be rare for our test
platform.

It is also worth noting that the SoC architecture of our
DUT contains many heterogeneous compute and memory
components that are largely independent, with point-to-point
connections to the processor. This makes the DUT well suited
for our testing approach where multiple SoC components can
be evaluated during the same test. Other SoC architectures
may be more prohibitive, such as architectures that rely on
mesh networks or networks-on-chip (NoCs) to pass data along
across several different components [28]. In such architectures
it may be much more difficult to isolate which individual
component exhibited a failure.

While there are certainly issues to consider, our bare metal
component-based method offers advantages as well. As men-
tioned earlier, the bare metal approach gives maximum control
over each component, and the ability to isolate radiation
characteristics. In addition, by using the SoC itself to test
the various components, the experiment is self-contained. No
external equipment is required beyond the standard equipment
that is used to program and communicate with the SoC.
This lends itself well to testing COTS (commercial-off-the-
shelf) SoCs since development boards are readily available to
facilitate programming and communication.

IV. OPERATING SYSTEM-BASED METHOD

The second SoC testing approach used in this work involves
the use of a Linux operating system running on the MPSoC
device and configuring the kernel in such a way as to report
as many system and component errors as possible. SEU
induced failures that occur within the system are detected by a
variety of error reporting mechanisms within the kernel, device
drivers, and application software. The two primary benefits of
using an operating system like Linux for SoC testing is the
ease of creating the test software environment and the ease
of measuring the failure rate of multiple components. If the
Linux operating system has been properly ported to the SoC
of interest, then the operating system software contains most
of the code necessary to exercise many of the components
within the SoC and report on these component failures. Much
of the low-level software needed to interact with these itnernal
components already exists within the device driver kernel
code ported for the device. A complex kernel with a memory
management unit, support for multiple cores, and device
drivers for the devices on the SoC can load the SoC much
more effectively than in a bare metal system. Such loading on
the SoC will expose failure modes that are not visible in a
bare metal system.

A number of previous works have demonstrated the impor-
tance and impact of the operating system when performing ra-
diation testing on a processor. [13] provides a set of guidelines
on methods for testing microprocessor devices and emphasises
the importance of the operating system on the overall results.
This work suggests that if a complex operating system is
used, it will heavily influence the results and interfere with
attempts to characterize the basic response of the processor.
This worked demonstrated the impact on processor hang rate
using the Windows NT operating system. [29] provides a
case study on microprocessor testing that suggests systems
should be tested using the operating system used in flight to
adequately understand full system failures. [30] measures the
improvement in reliability provided by two fault-tolerant real-
time operating systems operating on a 28-nm ARM processor
core. [31] investigates the impact of an operating system on an
embedded SoC. Results from this work indicate that the O/S
had limited impact on silent data corruption but a significant
effect on the functional interrupt rate.

There are a few disadvantages of using a complex oper-
ating system for SoC testing. First, the cross section of the
processor system itself will be higher with Linux than in a
bare metal system. This higher processor system cross section
is a result of more system resources being utilized and thus
more opportunities for failure. A higher processor system cross
section will make it more difficult to tease out errors in other
components as the processor will fail more often between other
component failures. Second, it may not be possible to test
some components for radiation-induced failure. If there are
no device drivers for a component found within a particular
SoC then it is not possible to access the component to check
on its behavior at run-time. In addition, some components
within a system cannot be accessed by the processor when
the processor is configured for virtual memory. Third, there
will be generally less control of the components under test
within Linux and a pre-designed device driver. The user may
have less control over configuring a component, monitoring
a component, or reporting component failures in a Linux test
than with bare metal.

1) Linux Test System: For our experimentation, we created
a Linux system to test the MPSoC device and measure the
neutron cross section of several components. Several kernel
configuration changes were made to the standard “out-of-the-
box” Linux kernel configuration for the device. These include
enabling ECC on the caches and memory controller, increasing
the kernel error reporting level, and enabling several kernel
debugging features. Several application programs (described
below) were configured to run on the system after kernel
booting to provide both a system load and a test for SoC
components. In addition, a custom PCAP driver was included
in the kernel for CRAM scrubbing and error reporting. The
system was designed to test the processor execution, cache
upsets, and upsets within the configuration memory.

2) Linux Test Methodology: The primary goal of the Linux
testing methodology is to measure the reliability of the Linux
kernel executing on the application processors. To provide
a computational load on the processors as well as the I/O
system, the Dhrystone benchmark is executed on all four A53
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processors. While the Dhrsytone benchmark is not a perfect
test of the entire computing system [32], it keeps the CPUs
busy computing, making OS related problems more likely
to be observed. The Linux kernel contains significant self
checking and error reporting code and provides significant
detail on a variety of different exceptions, such as kernel
panics.

The experiment is organized to identify the following pro-
cessor errors:
1) Boot Failure: The processor fails to boot and initialize the
kernel.
2) Process Failure: One or more of the four Dhrystone
processes fail.
3) Kernel Failure: The Linux kernel stops operating.
The details of kernel failures are logged and categorized to
understand the kernel failure mechanism.

3) Linux Cache Testing: Upsets in the cache memories can
be easily logged with the Linux test by enabling the ECC
driver within the Linux kernel. When this driver is enabled,
the ECC module on the cache memories is enabled and the
ECC interrupts are caught by the kernel when ECC events are
detected. Both single-bit and double-bit errors are reported,
as well as the location within the cache. The logging system
captures the details of each event for later analysis. Events
are captured for ECC errors in the L1 and L2 caches and the
TLB.

4) Linux CRAM Testing: The Linux test was also config-
ured to capture upsets within the configuration memory of
the programmable logic. Measuring CRAM upsets is usually
done using external means such as JTAG. In this experiment,
we use the PCAP component of the MPSoC to access the pro-
grammable logic from within the processing system. Counting
CRAM upsets facilitates the calculation of the neutron cross
section of the programmable logic.

Although a driver for accessing the PCAP is available for
the kernel, this driver does not provide sufficient control of
the PCAP or visibility of CRAM errors. Further, the PCAP
is isolated from the kernel requiring changes in the kernel
security controls. A custom driver for the PCAP was written
to provide low-level access and control of the PCAP com-
ponent. This driver is much more complicated and required
significantly more effort than the low-level driver code used
to access the PCAP in the bare metal component tests.

Other components could have been tested within the Linux
system but additional device drivers would need to be con-
figured and written to support such tests. However, some
components may not be accessible from the kernel or may be
configured within Linux in a manner that makes it unusable
for a radiation test.

V. EXPERIMENT SETUP

To test our proposed techniques, we performed an initial
set of experiments in September 2021 at the Los Alamos
Neutron Science Center (LANSCE). Our experiment was run
in the experimental area known as ICE House I, using the 30L
neutron flight path [33], [34]. This neutron beam provides a
spectrum similar to what can be found in the atmosphere, but
at a much higher flux [34].

In these experiments, we used our two approaches (bare
metal and Linux) to find the single event upset (SEU) cross
sections of components of the MPSoC chip. We placed five
Ultra96 development boards in series to collect data for
multiple experiments simultaneously over the five day period
at LANSCE. The physical setup of these boards can be seen
in Figure 3. Three boards were used to test the bare metal,
component-level test. Another board was dedicated for the
bare metal cache characterization technique. The final board
was used for the system-level Linux testing approach.

Fig. 3. Ultra96 Board Setup

The logical setup for a single board can be seen in Figure 4.
In this setup, the host computer monitors the experiment from
a safe location, but can communicate with and program the
boards over UART and JTAG. The DUT reports the errors
and state of health of its test over a UART communication
link where it is logged and monitored by the host computer.
When an upset is identified or the DUT fails to communicate
over the UART, the host computer power cycles the DUT
via a network-controlled power switch (the Netbooter in the
diagram) and reprograms the DUT to begin the experiment
once again. The dotted rectangle in Figure 4 represents the
dividing wall between the experimental area and a safe area
where radiation was not a concern.

VI. RESULTS

The experiment was conducted for five days, during which
our test area received a total neutron fluence of 2.72 ×1011

n/cm2. The actual neutron fluence for each experiment was
carefully measured by recording the net neutron fluence for
each time frame that the board was executing the test code and
summing across all executions. Most experiments have a lower
total fluence as the boards were not running all of the time.
Since the bare metal component experiments were running on
multiple boards, these experiments have a net fluence greater
than the total fluence.

The results for each experiment were tabulated by analyzing
the extensive text logs with custom processing scripts. Times-
tamps are included in the logs to identify the start and stop
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Fig. 4. Logical Experiment Setup

time of each experiment run to determine the total fluence.
These scripts identified each of the reported failures during
the experimental run.

A. Component Results

The results from the bare metal component test are sum-
marized in Table I. These results include the estimated cross
section of the CRAM using the PCAP component test, the
Crypto component test (utilizing the SHA and AES acceler-
ators), and the Matrix multiply benchmark test. These tests
were all running as part of the same executable on the same
board, demonstrating the effectiveness of running multiple
experiments simultaneously.

TABLE I
BARE METAL TEST CROSS SECTIONS

Total
Upsets

Device Cross
Section (cm2)

Size
(KiB)

Bit Cross
Section (cm2)

CRAM 3773 8.80×10−9 5531 1.94×10−16

Crypto 6 1.40×10−11

Matrix 5 1.17×10−11

Total Fluence: 4.288× 1011 neutrons cm−2

Not all of the component tests were successful. As shown
by Figure 2, software for a number of additional components
were included in the component test suite; however, several of
these tests produced inconsistent results due to software bugs
and testing anomalies. For example, the OCM had accidentally
been configured in such a way where the ECC was enabled,
but ECC interrupts were not. The end result is that single-
bit upsets were corrected (which prevented the software from
correctly checking), but not reported. These tests will be
repeated in the future to address the problems observed at
this test.

The results in Table I show very few upsets for the Crypto
and Matrix tests (6 and 5 respectively). Previous works that
have tested this part at LANSCE have likewise had difficulty
observing significant compute errors [8], [18]. While we
believe that the results show that the proposed technique is
capable of observing compute errors, more beam time, or a
higher flux facility would likely be required to better gain more
accurate cross-sections and better evaluate the effectiveness of
the proposed method.

B. Cache Results

The cache tests were performed on a dedicated board and
the resulting data is shown in Table II. Unlike the other
component tests, the cache test must be run on an isolated
board so that the cache contents can be carefully controlled
and monitored. The cache test relied on disabling the caches
so that the contents were stable. The error counts within the
cache are used to estimate the neutron cross section of the
data bits, tag bits, and TLB of the L1 data caches. Although
cache errors were observed, bugs in the cache test software
only tested 1/8th of the cache memory, resulting in relatively
few upset events and thus large error bars.

TABLE II
CACHE TEST CROSS SECTIONS WITH 95% CONFIDENCE INTERVALS

Total
Upsets

Device Cross
Section (cm2)

Lower
95%

Bit Cross
Section (cm2)

Upper
95%

Data 17 9.33×10−11 4.14×10−16 7.11×10−16 1.14×10−15

Data Tag 5 2.74×10−11 6.70×10−17 2.09×10−16 4.90×10−16

TLB 29 3.50×10−10 3.57×10−15 5.34×10−15 7.66×10−15

Total Fluence (Cache/Tag): 1.823× 1011 neutrons cm−2

Total Fluence (TLB): 8.288× 1010 neutrons cm−2

Note: The TLB has lower fluence as it was not tested for the entire
duration of the testing.

C. Linux Results

Table III summarizes the data from our Linux system
experiment. The Linux test includes the number of upsets
and the estimated cross section values for CRAM and caches.
In addition, it includes the total number of unexpected SoC
failures that required a power cycle. These events are grouped
by the cause of the restart:
Process Failure / Hangs: At some point during normal oper-

ation, the system stops responding and no more messages
were received.

Kernel Failures: The Linux kernel reported a failure of some
kind and then optionally reset the system.

APU Reset: The first stage bootloader (FSBL) and kernel
boot up began without a prior warning or message about
a problem. In other words, the processors were reset, but
the reason went unreported.

As discussed below in Sections VI-D and VI-E, the cross-
sections that are compared between Linux and the bare metal
tests are comparable. This is somewhat surprising since Linux
crashes more often, which we would expect to skew the results.
As noted earlier, we were careful to only include the fluence
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TABLE III
LINUX TEST CROSS SECTIONS

Total
Upsets

Device Cross
Section (cm2)

Size
(KiB)

Bit Cross
Section (cm2)

CRAM 1453 1.32×10−8 5531 2.91×10−16

L1 Cache 148 1.34×10−9 256 6.41×10−16

L2 Cache 648 5.89×10−9 1024 7.02×10−16

TLB 23 2.09×10−10 8 3.20×10−15

Proc. Fail/Hang 13 1.18×10−10

Kernel Failures 17 1.55×10−10

APU Reset 38 3.45×10−10

SoC Total 68 6.18×10−10

Total Fluence: 1.100× 1011 neutrons cm−2

while any experiment was actively running. In other words,
only the data from when Linux worked was tabulated in the
final answer. However, any silent Linux failures would not be
included.

D. Comparing Cache Results and Methods

As shown in Table IV, we find the bare metal and Linux
methods produce comparable results for the cache memories.
The data cache bit cross sections differ only by 4.53%. The
data tag and TLB RAMs are not as close, with percent
differences of 79.54% and 50.41% respectively, but the cross
sections for the data, data tag and TLB RAMs are all within
the same order of magnitude and have overlapping 95%
confidence interval error bars. Both the Linux and bare metal
methods produce detailed cache results, recording information
about which cache was upset, address, and bit location. While
the Linux method provides insight into more cache locations
(including the L2 cache and snoop rams), the bare metal
approach does not depend on the built in dedicated error
correction and detection functionality. One downside of the
Linux/ECC approach is that multiple cache upsets in quick
succession might give insufficient information to identify the
bit location, as the APU registers can only hold information
for one upset at a time. Since the bare metal approach reads
the contents of the cache directly, this problem is avoided. An
upside of the bare metal approach is that we can identify the
actual location of the error for the L1 instruction cache upsets
whereas the Linux system cannot identify the location since
only detection is supported with parity.

E. Comparing CRAM Results and Methods

In the case of the configuration memory, both the Linux
and bare metal method implement the same functionality.
As shown in Figure 5, these results produce similar data,
suggesting that the two approaches would tend to yield similar
bit cross sections results over repeated experimentation. To
provide an external reference for these methods’ results, we
compare these confidence intervals with device reliability
numbers provided by Xilinx. Xilinx’s data, which was also
obtained at LANSCE, list the bit cross section for UltraScale+
CRAM as being 2.67× 10−16 cm2 bit−1[23].

TABLE IV
COMPARISONS OF BIT CROSS SECTIONS

Total
Upsets

Device Cross
Section (cm2)

Lower
95%

Bit Cross
Section (cm2)

Upper
95%

Bare-metal
Data 17 9.33×10−11 4.14×10−16 7.11×10−16 1.14×10−15

Data Tag 5 2.74×10−11 6.70×10−17 2.09×10−16 4.90×10−16

TLB 29 3.50×10−10 3.57×10−15 5.34×10−15 7.66×10−15

CRAM 3773 8.80×10−9 1.88×10−16 1.94×10−16 2.01×10−16

Linux
Data 86 7.82×10−10 5.85×10−16 7.46×10−16 9.06×10−16

Data Tag 7 6.36×10−11 1.94×10−16 4.86×10−16 9.99×10−16

TLB 23 2.09×10−10 2.03×10−15 3.19×10−15 4.77×10−15

CRAM 1453 1.32×10−8 2.76×10−16 2.92×10−16 3.07×10−16

CRAM Data Tag TLB
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Fig. 5. A scatter plot of bare-metal and Linux method results

VII. FUTURE WORK

Our long-term research aims to develop testing and charac-
terization methodologies that can be used to more effectively
test complex SoC devices and understand how they behave
and fail in radiation environments. We feel like this test was
a step in the direction of rigorous and comprehensive SoC
radiation testing, but that there is clearly more to accomplish.

In this experiment, the bare metal approach tested a rel-
atively small subset of the available hardware components
in the MPSoC. We plan on developing a larger suite of
component tests that will be used in the future to better
understand more aspects of the MPSoC. For example, as
described in Section III-3, a matrix multiplication not only
tests the CPU, but inadvertently tests the memory system as
well. In subsequent tests, we hope to find a way to test the
CPU alone.

Many modern SoCs, such as the MPSoC, have multiple pro-
cessors on board. Some work has been done on understanding
the sensitivity of many-core chips [16], we hope to better test
the interactions of the multiple cores in an SoC and explore
the advantages that multiple cores can offer to SoC testing.
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VIII. CONCLUSIONS

In this work, we have shown two complementary ap-
proaches for testing SoC radiation response with the goal of
understanding failure rates of individual components, rather
than just the system as a whole. A bare metal approach was
presented that executed self-test software of several system
components, as well as a Linux system-level technique that
relied on operating system logging with custom kernel modifi-
cations. Both systems were successful in providing insight into
failure rates of individual SoC components; however, much
future work remains to develop more robust test software and
to test more aspects of the MPSoC and other SoCs.
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