
Assuring Netlist-to-Bitstream Equivalence
using Physical Netlist Generation

and Structural Comparison
Reilly McKendrick, Keenan Faulkner and Jeffrey Goeders

Department of Electrical and Computer Engineering
Brigham Young University

Provo, Utah, USA
{romckend, keenanrf, jgoeders}@byu.edu

Abstract—Hardware netlists are generally converted into a
bitstream and loaded onto an FPGA board through vendor-
provided tools. Due to the proprietary nature of these tools, it is
up to the designer to trust the validity of the design’s conversion
to bitstream. However, motivated attackers may alter the CAD
tools’ integrity or manipulate the stored bitstream with the intent
to disrupt the functionality of the design.

This paper proposes a new method to prove functional
equivalence between a synthesized netlist, and the produced
FPGA bitstream. The novel approach is comprised of two phases:
first, we show how we can utilize implementation information
to perform a series of transformations on the netlist, which do
not affect its functionality, but ensure it structurally matches
what is physically implemented on the FPGA. Second, we present
a structural mapping and equivalence checking algorithm that
verifies this physical netlist exactly matches the bitstream. We
validate this process on several benchmark designs, including
checking for false positives by injecting hundreds of design
modifications.

I. INTRODUCTION

When fabricating integrated circuits, such as ASICs and
FPGAs, the designer must trust that the chip is fabricated
correctly, and that the design is not modified by the fabri-
cator. This is especially important for military and defense
applications, or other security-sensitive applications; as such,
these organizations will typically employ trusted foundries to
ensure correct fabrication of their IC [1]. However, for FPGAs,
ensuring correct “fabrication” goes beyond just the physical
manufacturing of the chip; since FPGAs can be configured
to implement arbitrary digital circuits, a security conscious
designer must also ensure that the circuit design configured
onto the FPGA is free from malicious hardware trojans.

Even if a designer ensures their RTL design is Trojan-
free, ensuring the integrity of an FPGA design means that
the designer must also trust the integrity of the CAD tools
used to convert the designer-provided circuit description into
the bitstream configuration file (i.e., the “digital fab”), and
they must also trust that the bitstream is not modified post-
compilation. While many FPGA users take this for granted,

This work was funded by the Office of Naval Research, award N00014-22-
1-2683.

security conscious organizations may be concerned with the
possible vulnerabilities that exist with this process. For exam-
ple, a malicious actor with a CAD tool company may be able
to modify the tool to silently inject back doors or kill switches
into the design, an unknown bug in the tools may produce a
design where certain internal signals are accidentally leaked,
malware on a designer’s computer may replace portions of
an otherwise safe CAD flow with malicious tools that inject
hardware trojans into the produced bitstream, or finally, the
generated bitstream could be intercepted and modified post-
compilation.

Given these concerns, designers may wish to verify that a
given FPGA bitstream does in fact exactly match the circuit
description that they provided to the CAD tools. Unfortunately,
providing this assurance is very challenging. The original
circuit description goes through many optimizations and trans-
formations as it is mapped and implemented on the FPGA,
and furthermore, the bitstream itself is proprietary and not in
any way human readable. No commercial or academic tools
presently exist that can easily verify equivalence between an
RTL design and the produced bitstream.

In this work we present a novel approach for assuring
equivalence between a user’s design and the FPGA bitstream.
Our technique is illustrated in Figure 1. While an ideal equality
check would compare the designer’s RTL to the produced
bitstream, comparing against the original RTL is very chal-
lenging due to transformations performed by the synthesis
tool [2]. Instead, we present a technique to verify functional
equivalence between the post-synthesis netlist and the FPGA
bitstream. Our approach consists of two main phases: physical
netlist generation and structural comparison. The physical
netlist pass transforms the netlist to mimic transformations
made to the design during the implementation stage of the
CAD compilation. These transformations do not change the
functional nature of the design, but they do ensure that the
netlist exactly matches the physical implementation in the
bitstream.

Next, a structural comparison pass establishes a mapping
between the physical netlist and a netlist obtained from the

1142

2023 International Conference on Field Programmable Technology (ICFPT)

DOI 10.1109/ICFPT59805.2023.00021

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

ie
ld

 P
ro

gr
am

m
ab

le
 T

ec
hn

ol
og

y
(I

C
FP

T)
 |

97
9-

8-
35

03
-5

91
1-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

FP
T5

98
05

.2
02

3.
00

02
1

979-8-3503-5911-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

bitstream. This reversed netlist will contain no hierarchy and
no instance or signal names, making it challenging to compare
against using traditional techniques such as logical equivalence
checking offered by commercial tools [2]. However, since
the structure of the reversed netlist will perfectly match the
structure of the physical netlist, we can use an algorithm that
leverages this information to make the comparison.

The major contributions of this work are:
• A physical netlist generator, that leverages Rapid-

Wright [3] to transform a logical netlist to a form
that exactly matches the physical implementation in the
bitstream. While in this work we propose using this netlist
for assurance purposes, it may also be useful for other
custom CAD tool and design analysis purposes.

• A structural comparison tool that demonstrates how cells
and nets can be mapped between a physical netlist and a
reverse-engineered netlist. This tool can be used to ver-
ify netlist-to-bitstream equivalence with better scalability
than commercial functional equivalence checking tools.

• An open-source release of both of these tools, as part of
the BYU FPGA Assurance Tool (BFASST), available at
https://github.com/byuccl/bfasst.

• An experimental validation of the proposed flow on many
benchmark designs, including checking for false positives
by injecting design modifications into the reversed netlist
and verifying that the equivalence check detects the
changes.

II. BACKGROUND

A. Trojan Detection

As custom hardware circuits continue to see use in de-
fense and security-sensitive applications, there is a growing
concern about the presence of malicious hardware trojans
in these circuits [4]. Hardware trojans are malicious third-
party modifications to circuits, and can take the form of back
doors into circuits, kill switches, intentional leaks of sensitive
information, or other harmful modifications. While evidence

Synthesis Implement

Equal?

Netlist

Ideal Equality Check

Phys. Netlist
Generator

Physical
Netlist

Bit to
netlist

Structural
Compare

Equal?

RTL .bit

Proposed Netlist-to-Bitstream Equality Check

Reversed
Netlist

Checkpoint

Fig. 1: Overview of the proposed assurance flow, which
verifies equivalency between the post-synthesis netlist and the
bitstream.

of hardware trojans in the wild is limited [4], [5], their
potential for severe destructive capabilities has motivated much
research into techniques for detecting them. There have been
several works focused on detecting hardware trojans in digital
circuits, including static analysis of the source design [6], [7],
using embedded circuitry to monitor the system for anomalous
behavior [8]–[12], or a combination of these techniques [13].

The proposed techniques in this paper are not focused on
detecting hardware trojans, but rather on providing assurance
that the bitstream exactly matches the user’s design. Our
proposed techniques would be used in conjunction with trojan
detection techniques: a designer would first employ static
analysis techniques to ensure their netlist is trojan-free, and
then after generating a bitstream, use our proposed technique
to ensure the produced bitstream remains equivalent to their
input netlist.

B. Bitstream-Level Attacks

The proposed work is aimed at detecting cases where the
produced FPGA bitstream is compromised, but the original
circuit design remains safe and unchanged. As discussed
previously, this could occur with compromised CAD tools,
or it could occur if the FPGA bitstream was compromised
post-generation. While these cases may seem improbable,
recent work has shown both their possibility, and potential for
significant consequences. In [14] and [15] the authors show
how behavior of normal FPGA CAD tools can be exploited
to insert trojan activation switches into the design during
compilation. These changes are not detectable in the hardware
source code, and require inspection of the FPGA bitstream,
as proposed in this work. In [16] the authors show that it is
possible to locate which portions of an FPGA bitstream control
certain elements of an AES encryption module, thus allowing
them to make modifications to the bitstream so that the final
circuit is much easier to attack, and the encryption key can be
obtained.

C. Related Work

There has so far been relatively little work in the re-
search community on addressing equivalence of FPGA designs
through the CAD flow.

In [17], Hastings et al. propose two different techniques to
ensure an IP remains unmodified through the implementation
phase of FPGA CAD. They first explore a physical-level
approach that requires the IP to be pre-implemented in a design
partition before being instanced in the user’s design; however,
this places the burden of implementation on the IP provider.

The other approach is more similar to our work in that
it checks for functional equivalence from the netlist to the
implemented design. However, their work does not perform
any comparison against the bitstream, but rather just inspects
the implementation details obtained from Vivado, and uses
Cadence Conformal to compare to the post-synthesis netlist.
This is a much easier problem to solve as signal names
are maintained and can be used to seed the comparison in
Conformal. However, this approach trusts that the CAD tool

2143

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

self-reports correct design information, which goes against
the premise of developing an assurance flow that verifies
correctness of an untrusted CAD flow. Unlike this work, it
also would fail to detect any attacks that occur during or after
bitstream generations, such as those discussed in the previous
subsection.

In [2], Cahill et al. expand upon this work and extend
it to bitstream-level comparison. They leverage Project Ices-
torm [18], which provides bitstream-to-netlist tools for the Lat-
tice iCE40 FPGAs (a 4-LUT architecture, sometimes referred
to as the ”world’s smallest FPGA”). The comparison process
is relatively successful, but encounters substantial scalability
issues, as the commercial equivalence checkers they use are
not designed to handle comparison between netlists with no
seed mapping information (due to the absence of signal names
in the reverse engineered netlist). The largest designs they
test are a couple thousand 4-LUTs, with runtimes sometimes
taking over 24 hours.

In contrast, this work presents a technique that is designed
with scalability in mind. We do not rely on functional equiv-
alence checkers where the state space can grow exponentially
and become intractable. Rather, our approach of transforming
the netlist to structurally match the bitstream means that we
can perform a structural comparison between the two designs.
Both netlists will have the exact same primitives connected in
the exact same pattern, using the exact same set of pins. This
makes for a much simpler comparison problem. In contrast,
the equivalence checker tools used in [2], are trying to prove
the much harder problem that despite the two netlists having
different structures, they are still functionally equivalent.

III. ASSURANCE FLOW

Our netlist-to-bitstream assurance flow is shown in Figure 1.
While we believe this approach could be applied to multiple
FPGA vendors and device families, in this paper we present a
proof-of-concept tool that targets the Xilinx 7-series FPGAs.

Unlike previous work [2], [17] that relied on custom syn-
thesis tools or pre-implementation of the user design, our
proposed flow allows the user to use standard CAD tools for
synthesis and implementation. Xilinx Vivado is used to first
synthesize the design to a post-synthesis (technology-mapped)
netlist. Our current tool only works on flattened netlists, so the
flattening option in Vivado must be set; however, with some
additional engineering, our tool could be extended to support
hierarchical netlists.

Since our assurance flow only compares the bitstream
against the post-synthesis netlist, the user would need to ensure
they are satisfied with the safety of this netlist. This would be
accomplished through either trusting the commercial synthesis
tool, using an in-house or open-source trusted synthesis tool,
or vetting the post-synthesis netlist through trojan analysis
techniques.

Next, the user can use Vivado to perform implementa-
tion and bitstream generation. During this process an imple-
mentation checkpoint needs to be exported out of Vivado.
The produced bitstream is then converted to a netlist using

Project X-Ray [19] to convert bitstream to FASM, and then
fasm2bels [20] to convert FASM to a Verilog netlist. The
netlist produced by fasm2bels is a completely flat netlist
containing each BEL (Basic Element of Logic, such as lookup
tables and registers) used in the bitstream, the BEL configu-
ration properties, and the nets that connect the various BEL
pins. The netlist contains no original internal signal or instance
names; however, the original XDC constraint file provided to
Vivado can also be provided to fasm2bels, which is sufficient
to determine primary input and output signal names based on
the pin constraints.

Once both a netlist and reversed engineered netlist are
produced, our proposed assurance flow can proceed. It is
comprised of two major steps: the physical netlist generation,
and the structural mapping and comparison.

The physical netlist generation, detailed in Section IV,
is a Python script that takes the post-synthesis netlist and
the implementation checkpoint, and generates a transformed
netlist that is structurally equivalent to the bitstream. The
transformations are based on the implementation information
provided by the Vivado implementation checkpoint, which is
accessed using the RapidWright [3] tool. For convenience,
RapidWright is also used to transform the netlist and generate
the new netlist file, although it would be possible to do this
using a fully open-source tool, such as Spydrnet [21].

The transformed netlist is then used as the golden netlist for
comparison against the bitstream netlist. This comparison tool,
described in Section V, is another Python script, and provides
a structural comparison of the two netlists. It works by first
establishing a mapping of each cell instance and net in the
design, and then uses this mapping to verify the two designs
are exactly identical.

IV. PHYSICAL NETLIST GENERATOR

This section describes our physical netlist generator, which
takes a post-synthesis netlist and an implementation check-
point, and produces a transformed netlist that is structurally
equivalent to the bitstream.

One may suppose that if you export a netlist from Vivado
after implementation, that it would already more closely
resemble how the design is implemented in the bitstream;
however, this is not the case. Even after implementation, when
you export a netlist from Vivado you still are given the post-
synthesis netlist.

A. Transformations

Our Python script utilizes RapidWright [3], which allows
us to load the netlist and iterate through the design im-
plementation data looking for places where implementation
transformations have taken place. The following subsections
discuss the implemented transformations that must be handled.

1) Replacing Logical Cells with Physical BEL Primitives:
The post-synthesis netlist contains a collection of Xilinx
UNISIM Cells; however, the UNISIM library of cells does
not have a one-to-one relationship with physical BELs on
the FPGA. For example, the UNISIM library contains LUT1,

3144

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

BUFG clk IBUF BUFG inst (
. I (clk IBUF) ,
.O(clk IBUF BUFG)) ;

(a) BUFG instance in original netlist

BUFGCTRL #(
. INIT OUT (0) ,
. IS CE0 INVERTED (1 ’ b0) ,
. IS CE1 INVERTED (1 ’ b1) ,
. IS IGNORE0 INVERTED (1 ’ b1) ,
. IS IGNORE1 INVERTED (1 ’ b0) ,
. IS S0 INVERTED (1 ’ b0) ,
. IS S1 INVERTED (1 ’ b1) ,
. PRESELECT I0 (”TRUE”) ,
. PRESELECT I1 (”FALSE”))
clk IBUF BUFG inst phys (

. CE0 (1 ’ b1) , . CE1 (1 ’ b1) ,

. I 0 (clk IBUF) , . I1 (1 ’ b1) ,

. IGNORE0(1 ’ b1) , . IGNORE1(1 ’ b1) ,

.O(clk IBUF BUFG) ,

. S0 (1 ’ b1) , . S1 (1 ’ b1)) ;

(b) BUFGCTRL instance generated in physical netlist

Fig. 2: BUFG cell replacement with BUFGCTRL BEL in-
stance

LUT2, LUT3, LUT4, LUT5, and LUT6 cells, depending on the
size of the logic function, but physically, the 7-series FPGAs
only have LUT6 2 BELs, and all of these cells are mapped
to this single type of BEL. Thus, for every LUT* cell in the
netlist, we remove it, and replace it with a LUT6 2 instance.

Swapping out a smaller LUT for a larger one requires you
to scale up the INIT property to a larger width, duplicating
the INIT values for each additional LUT input. For example,
a LUT2 implementing a simple AND-gate would have a 4-
bit INIT value of 4’h8, but if replaced by a LUT3, the new
INIT value would need to be 8’h88 (all LUTs are actually
replaced with LUT6 2 instances, but we include this smaller
LUT size replacement as a simpler example).

The need to replace UNISIM cells with cell instances that
match physical BELs does not just occur for LUTs. For
example, a BUFG, BUFGCTRL, and other BUFG* cells are all
mapped to the same BUFGCTRL BEL, and need to be replaced
in the netlist. The BUFGCTRL has additional parameters and
inputs not found on a BUFG cell, which need to be driven
with appropriate constants to match the correct cell behavior.
Figure 2 provides an example of this transformation taken from
one of our test designs.

2) Logical to Physical Pin Mapping: In many cases FPGA
primitives have equivalent pins, meaning that it doesn’t matter
which input a signal is connected to, as long as it is connected
to one of the equivalent pins. For example, with a LUT
primitive, all input pins are equivalent, since it doesn’t matter
the order in which the input signals are connected to the

I0 I1 OUT

0 0 0

0 1 0

1 0 1

1 1 0

I0=I1 I1=I0 OUT

0 0 0

0 1 1

1 0 0

1 1 0

Logical LUT Function Physical LUT Function

Fig. 3: LUT pin reordering example

LUT pins. If the ordering of input pins are changed, the
configured logic function can be modified appropriately. This
behavior makes it easier for the router to route signals to
LUT inputs, since the signal does not need to reach a specific
LUT input, but rather any LUT input. This leads to the CAD
tools frequently changing the ordering of the LUT inputs from
the logical ordering in the netlist, to the physical ordering
implemented on the FPGA.

To accommodate for this behavior, after replacing all LUTs
with LUT6 2 primitives, we then reorder the inputs to match
the logical to physical pin mapping, which is available through
convenient functions in RapidWright. The INIT property must
also be reordered to match the new pin ordering. Figure 3
shows an example of this transformation. The left-hand side
of the figure shows the logic function OUT = I0&~I1,
while the right-hand side shows the logic function when the
physical implementation has swapped the input pins, which
now becomes OUT = ~I0&I1. The bits in the INIT value
need to be shuffled accordingly, and in this simple example
would be updated from 4’h4 to 4’h2.

To make this change we leverage the RapidWright LUT-
Tools class which contains functions to convert between equa-
tion strings and INIT values. We first convert the INIT value
to an equation, then do a find and replace on the input names
in the equation, and then convert back to an INIT value.

In our testing we have only observed Vivado changing
pin orderings for LUT primitives. It is conceivable that other
primitives may also undergo pin swapping (eg. swapping the
two sets of input pins to a CARRY4 primitive); however, we
have yet to observe this behavior.

3) LUT Combining: Another very common transformation
that takes place is the combining of two logical LUTs into
a physical LUT6 2 primitive. Figure 4 provides a diagram
of the LUT6 2 primitive. As shown, a LUT6 2 actually has
two outputs, and can implement two logic functions from the
netlist, provided that between the two logic functions, they are
five or fewer unique input signals.

In our physical netlist transformation code we look for
instances in the implemented design where this occurs, and
extract which two LUTs from the netlist have been combined
together. We then remove these two LUTs from the netlist
and replace them with a single LUT6 2 instance. Care must

4145

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Two LUT5s within a larger LUT6 2 primitive [22].

Fig. 5: Routing to a flip-flop through a LUT6 2 [23]
.

be taken to handle the mapping of logical to physical pins,
as described in the previous section, and both sets of logical
input pins must be combined and connected to the single new
LUT6 2 instance. The INIT property must also be combined
correctly, incorporating the technique previously described to
produce two different 32-bit LUT5 INIT values that are then
concatenated together to form the 64-bit LUT6 2 INIT value.

4) LUT Routethrus: In the 7-series FPGA architecture, each
flip-flop is driven by a mux that selects between an output of
the associated LUT6 2, and a dedicated CLB input for that
flip-flop (eg. DX for the DFF BEL).

Typically if the flip-flop is not driven by a LUT placed at the
associated LUT6 2 BEL, then the input signal will be routed
to use the dedicated CLB input pin (eg. DX). However, on
occasion the CAD tools will elect to route the signal to the
flip-flop by going through the associated LUT6 2. This likely
occurs because the router had an easier time routing to a LUT
input (it could use any LUT input), than the dedicated flip-flop
input pin. In this case the LUT is now playing an active role
in the design, where there would have originally been no LUT
to represent this buffered connection in the original netlist.

To handle this we add a new LUT6 2 instance to the design,
disconnect the net that was driving the flip-flop and instead
connect it to the appropriate LUT input, and then create a
new net to connect from the LUT output to the flip-flop input.
The LUT INIT must also be configured correctly to pass the
appropriate input pin to the output.

This is further complicated by the fact that this new LUT
routethru may share half of a LUT6 2 with another logic
function in the netlist, for the reason described in the pre-
vious section. This edge case must be detected and handled
appropriately.

An observant reader may now realize that how we have
designed our physical netlist generator is quite dependent
on the behavior of the bitstream-to-netlist tool we are using
(fasm2bels). We need to add the LUT routethru as a new LUT
instance in our design because the output of fasm2bels also
outputs a LUT instance when it encounters a LUT routethru,
and we want the designs to be structurally identical. The
fasm2bels tool produces a netlist that closely represents the
bitstream from which it was derived, and as such, doesn’t make
any attempt to optimize out LUTs that are only functioning as
buffers. However, should a different tool be used to generate
the reverse-engineered netlist, different design choices may
need to be employed in the physical netlist generator.

5) LUT Constant Generators: Another implementation op-
timization we encountered was LUT logic being used to
generate a constant GND or VDD. This constant would then
be used as an input to other primitives in the CLB, such as a
flip-flop or a CARRY4.

This case is very similar to the previous case of a LUT
routethru, in that the LUT is now playing an active role in
the design, where there would have originally been no LUT to
represent this constant in the original netlist. It should be noted
that this is quite rare; usually Vivado will route a constant from
a dedicated constant generator in the global routing fabric;
however, on occasion it seems to decide to use a LUT instead,
possibly when there is increased routing congestion.

We follow a similar approach to the LUT routethru case,
where we add a new LUT6 2 instance to the design, and add
a new net to connect from the LUT output to the required
primitive input. The LUT INIT is set to all 0s or all 1s to
generate the respective GND or VDD constant. Again, care
must be taken when this new constant generator shares the
LUT6 2 with another logic function in the netlist (or with a
routethru).

6) LUTRAMs: The Xilinx UNISIM library has multiple
primitives for LUTRAMs which use anywhere from one to
four LUTs [23]. When analyzing the LUTRAMs, fasm2bels
seeks to map to the largest LUTRAM primitive possible.
This does not always match the synthesized netlist, since
the synthesis tool may chose smaller LUTRAM primitives,
but then in implementation, they will get packed together on
the same slice, mimicking the behavior of a larger primitive.
Therefore, we analyze the placement of the LUTRAMs in
the design implementation and combine them into larger
LUTRAM primitives in the produced netlist, where applicable.

B. Maintaining Functional Equivalence

The goal of our assurance flow is to verify functional
equivalence back to the original post-synthesis netlist. Since
the actual comparison step compares against the physical
netlist (not the post-synthesis netlist), care must be taken to

5146

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

ensure that none of the transformations made in the physical
netlist generator change the functionality of the design.

Fortunately, for most of these transformations it is fairly
obvious they do not impact the netlist functionality. The con-
stant generator and LUT routethru modifications only serve to
replace existing routing and constant generation with LUT6 2
primitives, and do not impact the functionality. Combining
two LUTs into a single LUT6 2 also does not change their
functionality, provided the INIT value is updated correctly.
The same is true for any input pin reordering.

Perhaps the highest risk of change to functionality is when
UNISIM cells are replaced by their physical implementation,
as shown in Figure 2. Care must be taken to ensure parameters
and signals are set correctly to match the corresponding
primitive.

C. Trusting the Implementation Information

There may be some concern that we are using untrusted
information from the Vivado tool to make these transforma-
tions. For example, if the tool provided false information about
the implemented design, it could lead us to make incorrect
transformations. However, since the transformations we make
don’t actually change the functionality of the design, there is
no risk of this attack vector causing us to falsely verify the
design. With incorrect implementation information, the design
would simply be transformed incorrectly, and not exactly
match the structure of the reverse-engineered netlist. This
could cause false negatives (where equivalent bitstreams are
reported as non-equivalent), but not false positives (where non-
equivalent bitstreams are reported as equivalent).

V. STRUCTURAL MAPPING AND COMPARISON

Once the physical netlist has been generated, we use Spy-
drnet [21] to create the netlist data structures for our mapping
algorithm.

Our structural mapping algorithm is shown in Listing 1. The
general approach for our algorithm is to iterate through all
cell instances in the netlist design, and determine which cell
instances in the reserve-engineered netlist could be possible
matches. When the number of possible matches is one, a match
is made. If the number of possible matches is zero, then the
algorithm reports that the designs are not equivalent.

The algorithm begins with an empty mapping of nets and
instances (line 2). It then loops through all cells in the netlist
design and determines a list of possible matches in the reverse-
engineered netlist, based on the cell type and cell properties.
These possible matches are cached for each cell instance (lines
5-12).

The next part of the algorithm uses the top-level pin
constraints to establish a mapping between the top-level nets
in the netlist and the reverse-engineered netlist (lines 16-19).
This is necessary because the reverse-engineered netlist does
not contain any signal names, so we need to use the constraints
to determine which top-level nets are connected to which pins.
This also provides an initial seed mapping for the algorithm,

Listing 1: Structural mapping algorithm to map instances and
nets between two netlists, A and B
1 # Net , i n s t a n c e map are empty bi − d i r e c t i o n maps
2 net map = b i d i c t () ; block map = b i d i c t ()
3
4 # I n i t i a l i z e a cache o f p o s s i b l e matches
5 p o s s i b l e m a t c h e s = d i c t ()
6 f o r A i n s t in A. i n s t a n c e s :
7 # F i l t e r p o t e n t i a l matches i n B
8 matches = [m f o r m in B . i n s t a n c e s
9 i f m. type == A i n s t . type]

10 matches = [m f o r m in matches
11 i f props match (m. p r o p e r t i e s , A i n s t)]
12 p o s s i b l e m a t c h e s [A i n s t] = matches
13
14 # Map n e t s c o n n e c t e d t o top − l e v e l p i n s .
15 # (These match based on d e s i g n c o n s t r a i n t s)
16 f o r A pin in A. t o p p i n s :
17 net A = A pin . g e t n e t ()
18 net B = B . g e t p i n (pin A . name) . g e t n e t ()
19 net map [net A] = net B
20
21 # Loop u n t i l no more p r o g r e s s has been made
22 whi le p r o g r e s s :
23 p r o g r e s s = F a l s e
24
25 # V i s i t a l l unmapped i n s t a n c e s i n A
26 f o r A i n s t in unmapped A. i n s t a n c e s :
27 matches = p o s s i b l e m a t c h e s [A i n s t]
28 matches = [m f o r m in matches
29 i f m not in block map]
30 matches = [m f o r m in matches
31 i f p i n n e t s m a t c h (m, A ins t , net map)]
32 i f l e n (matches) > 1 :
33 p o s s i b l e m a t c h e s [A i n s t] = matches
34 c o n t in u e # Mapping ambiguous
35 i f l e n (matches) == 0 :
36 e r r o r a n d e x i t () # Mapping i m p o s s i b l e
37
38 # Mapping i s u n i qu e
39 a d d i n s t a n c e m a p p i n g (A ins t , matches [0])
40 p r o g r e s s = True
41
42 def a d d i n s t a n c e m a p p i n g (A inSst , B i n s t) :
43 block map [A i n s t] = B i n s t # Map i n s t a n c e
44
45 # Use new mapping t o map n e t s
46 f o r pin A in A i n s t :
47 net A = pin A . g e t n e t ()
48 net B = B i n s t . g e t p i n (pin A . name) . g e t n e t ()
49 i f net B i f net map :
50 e r r o r a n d e x i t () # Net a l r e a d y mapped
51 i f net A not in net map :
52 net map [net A] = net B # Map n e t

which will help it make progress in the early stages of the
algorithm.

Once these setup steps are complete, the algorithm enters
the main phase of the matching (lines 22-40). For each
instance, a list of possible matches are initialized to the
cached list of possible matches (line 27), and then filtered
to only those that have not yet been mapped (lines 28-29).
The algorithm then filters this list based on the mapped nets
connected to the cell pins (line 30-31). The more pins that are
connected to mapped nets, the better the filtering will perform.
If the number of possible matches is greater than one, then the

6147

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Validated Designs

Design Resources Runtime (s) # Error
Injection Runs

LUTs # FF # CARRY4 # BRAM # LUTRAM # SRL
Phys.

Netlist.
Struct.
Cmp.

stereovision1 13164 11588 2014 0 0 0 8.7 237.4 100
aes128 2790 4480 0 86 0 0 3.6 42.8 100
riscv final 1499 1390 44 0 0 0 4.8 7.7 100
cpu8080 1010 243 86 0 0 0 1.8 2.7 100
sha 1000 894 56 0 0 0 1.5 3.4 100
mkSMAdapter4B 987 1126 73 4 0 0 1.1 4.8 100
bubblesort 814 1782 0 0 0 1 1.5 5.7 100
pid 741 423 0 0 0 0 1.2 3.3 100
median 740 125 52 0 0 0 1.2 3.1 100
a25 decode 677 640 0 0 0 0 0.7 5.0 100
regfile 611 1056 0 0 0 0 3.7 5.6 100
riscvSimpleDatapath 570 63 28 0 0 0 3.7 2.5 100
basicrsa 540 459 72 0 0 0 0.7 1.9 100
hight 502 134 28 0 0 0 0.7 1.3 100
alu 461 0 20 0 0 0 3.3 2.6 100
a25 wishbone 422 818 0 0 0 0 0.6 2.7 100
uart2spi 369 410 6 0 0 0 0.9 1.2 100
quadratic func 238 118 52 0 0 0 0.4 1.4 100
raygentop 221 303 4 0 0 1 0.5 1.4 100
pci mini 219 333 0 0 0 0 0.6 1.9 100
tiny encryption algorithm 200 264 40 0 0 0 0.5 2.4 100
data path 179 257 3 0 0 0 0.5 1.6 100
EX stage 168 38 4 0 0 0 0.4 0.9 100
calc 163 18 12 0 0 0 3.1 1.3 100
pic 133 77 8 0 0 0 0.4 0.4 100
wb lcd 87 80 5 0 0 0 0.3 0.5 100
control unit 78 5 0 0 0 0 0.3 0.4 100
a25 coprocessor 74 171 0 0 0 0 0.3 0.6 100
uart 69 137 18 0 0 0 3.0 1.5 100
stereovision3 54 118 0 0 0 0 0.1 0.4 100
shiftReg 51 20 0 0 0 0 3.0 1.1 100
UpDownButtonCount 49 24 12 0 0 0 3.0 1.3 100
simon core 35 27 0 0 0 12 0.2 0.3 100
stopwatch 34 52 10 0 0 0 2.9 1.1 100
stereovision2 28 39 0 0 0 0 0.1 0.3 100
ID stage 26 73 0 0 0 0 0.2 0.5 100
bcd adder 24 50 5 0 0 0 0.3 0.2 100
uart rx 20 39 4 0 0 0 0.1 0.2 100
rx 19 39 4 0 0 0 2.8 1.3 100
random pulse generator 4 33 0 0 0 0 0.2 0.1 100
a25 write back 1 44 0 0 0 0 0.1 0.4 100
MEM stage 0 37 0 0 64 0 0.2 0.3 100

algorithm updates the cached list of possible cells with the new
reduced list, but skips mapping this instance for now, and will
return to it later (lines 32-34). If the number of matches is zero,
then the algorithm reports that the designs are not equivalent,
and exits (lines 35-36).

When there is a single possible match, the algorithm
has successfully establish a new instance mapping, and the
add intance mapping function (lines 42-52) is called. This
function adds the mapping to the instance map, and then
uses this new mapping to iterate over all of the cell pins,
and establish mappings for the nets connected to the pins.
Enhancing the net map will make future instance filtering more
effective, and will help the algorithm make more progress in
subsequent iterations.

This process is repeated continuously, as long as progress
can be made. We have yet to encounter a design where this
algorithm does not converge to a solution. However, there
is a possible case, where there remain no unmapped nets,

and all the unmapped primitives are of the same type and
have the same property values. In this situation, the remaining
primitives can simply be arbitrarily mapped to each other since
they are all equal, allowing the algorithm to continue to make
progress.

The code in Listing 1 serves as the mapping phase of the
comparison process, and once completed, a verification phase
is run. This algorithm iterates through all instances in the map,
and ensures they are identical to each other, which consists
of again verifying matching properties, and verifying that for
each pin, the equivalent (ie mapped) nets are connected. This
final check verifies that the entire design is mapped, and that
every instance and net is identical between the two designs.

Our algorithm is implemented in pure Python code, so the
performance is not nearly as fast as what could be achieved
with a compiled language. However, we have thus far been
focused on demonstrating the feasibility of the approach,
and have not yet focused on performance. As the physical

7148

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

transformation process only makes one pass through each cell
in the design, it scales linearly with the size of the design.
As for the structural matching, the worst-case runtime for this
algorithm scales quadratically with the design size. This is
because each loop in the matching iterates through all cells in
the design, and in the worst case, the loop executes once for
each cell in the design (at least one cell needs to be mapped
during each iteration for the algorithm to progress). In practice,
the algorithm typically makes multiple matches per pass (at
minimum, the first pass matches all I/Os). Based on the fact
that the algorithm has always made progress and converged to
a solution, we believe that the algorithm is fast enough to be
used in practice, and that it will scale successfully to larger
designs.

VI. EXPERIMENTAL RESULTS

A. Validated Designs

Table I shows the designs that we have validated using our
physical netlist generator and comparison tool. It also shows
the runtimes for the physical netlist generation and structural
comparison/validation in seconds. This was run using Python
3.11 on an Intel i9-13900K CPU with 32 GB of RAM. We
have 42 designs where we were able to validate the bitstream.
These designs are a mixture of open-source IP from Open
Cores, the VTR7 [24] benchmark suite, IP from the LEON3
processor, and some small designs of our own creation. The
target device used in the experiments is a Xilinx Artix 7
XC7A200T FPGA.

The largest design is stereovision1 with 13,164 LUTS and
11,588 flip flops, and it took just under four minutes to run.
This design is an order of magnitude larger, and ran orders
of magnitude faster, than the largest designs tested in [2],
which used a commercial equivalence checker. Given we are
using a pure Python implementation, we believe this is a very
promising result, and shows the feasibility of this approach to
handle even larger, real-world design sizes.

We also had 13 designs that failed comparison (not shown
in the table). However, this was not due to issues with our ap-
proach, but rather due to limitations in the third-party tools we
used. Five designs failed because of a bug in the Python netlist
reader, Spydrnet [21], causing it to fail to read the netlist. One
design failed when using Project X-RAY to convert bitstream
to FASM, and the rest failed due to fasm2bels failing to convert
the FASM file to a correct netlist. This is not surprising since
Project X-Ray and fasm2bels do not support all primitives
offered by the Xilinx 7-series FPGAs. In general, it supports
LUTs and flip-flops, LUT RAMs, SRLs, clock generators, and
limited support for BRAMs. Other primitives, such as FIFOs
and DSPs are not supported, so we had to ensure our test
designs contained only supported primitives, or when possible,
disable the use of these primitives in Vivado. However, even
when attempting to restrict the design to be supported by these
tools, we still encountered failures.

B. False Positive Testing

To verify the ability of the structural comparison tool to
detect instances where the design has been altered, we created
an error injector tool that would modify the reversed netlist,
either randomly changing a bit in a LUT INIT property or
randomly swapping the driving wires of two internal instance
pins. The structural matcher was then run as usual, and we
would verify that it reported a failed comparison. Table I
includes how many different erroneous design modifications
were tested for each of our benchmarks. None of the errors
injected resulted in false positives.

VII. DISCUSSION

Although we have been very pleased with the results of our
approach, there are still some limitations and challenges that
we have encountered.

Device Support and Larger Designs: The netlist conver-
sion techniques we employ need to account for every pos-
sible transformation that can occur during the post-synthesis
implementation and bitstream generation phases of the CAD
flow. Unfortunately, we are not privy to the Xilinx CAD tool
internals, so there is no way for us to know whether our catalog
of transformations is comprehensive. Although our approach
is ad hoc, we have accounted for all transformations we have
observed, and have purposefully included a very large number
of test designs in our results to demonstrate our due diligence
in discovering possible transformations. We have not withheld
any designs from the results (except those that failed due to
third party tool issues).

Bitstream documentation projects, like Project X-Ray[19],
use differential analysis to determine how FPGA features map
to the bitstream. However, obtaining complete coverage of the
bitstream is challenging, and requires additional engineering
beyond what has been invested so far into this open source
project. When using other vendors, the designer would have
to be aware of the physical transformations between the logical
netlist and the physical implementation on the device. While
we wanted to demonstrate our work on even larger designs, we
found that the larger the design, the more likely we were to
encounter an unsupported feature. Despite these challenges,
we feel this approach would still be useful for a security-
conscious organization that was willing to invest the time and
effort to ensure the bitstream documentation was complete for
their target device.

Trust Model: Our approach is designed to verify the
correctness of the CAD tools, from netlist to bitstream. As
such, our approach does not rely on trusting any information
reported by the CAD tools.

We do leverage RapidWright [3], a partially open-source
tool, to parse the Vivado implementation information and
generate the new physical netlist. However, even without
RapidWright, this same information could be retrieved via
the Vivado Tcl API. As discussed earlier, if the retrieved
implementation information was in some way false, it would
not impact the correctness of our approach, but could lead to
false negatives.

8149

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

RapidWright is not actually capable of generating a Verilog
netlist, so we use Vivado to convert the EDIF physical netlist
generated by RapidWright to Verilog. This was done for
simplicity, but would ideally be replaced by a trusted tool in
a production assurance flow.

We leverage the open-source Spydrnet [21] netlist parser in
our structural comparison process, but this tool is not required,
and could be replaced with another tool, or even a custom
parser.

Other Malicious Circuitry: Our structural comparison
approach verifies the exact equivalence of all circuitry between
inputs and outputs of the design. Currently we do not look
for or analyze “floating” circuitry that may be present in
the bitstream, such as power-generating ring oscillators, or
short-circuits [25]. However, other research projects have
demonstrated this type of analysis and detection [26].

VIII. CONCLUSION

We demonstrate a novel method to verify synthesized
netlist-to-bitstream equivalence, proving the correctness of the
implementation and bitstream generation steps of the CAD
flow. The presented approach would also detect attacks that
intercept and modify the bitstream, such as those demonstrated
in [14]–[16].

We have provided an open-source release of these tools, as
well as experimental results that show our structural compar-
ison accurately detects errors in altered bitstreams.

Our method is a viable option to validate a bitstream and
scales better than previous techniques at attempting to prove
functional equivalence through formal methods.

REFERENCES

[1] Trusted Microelectronics Joint Working Group, “New
methods to instill trust in commercial semiconductor
fabrication,” White Paper, Jul. 2017.

[2] E. Cahill, B. Hutchings, and J. Goeders, “Approaches
for FPGA design assurance,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 15, no. 3,
28:1–28:29, Dec. 28, 2022.

[3] C. Lavin and A. Kaviani, “RapidWright: Enabling cus-
tom crafted implementations for FPGAs,” in Symposium
on Field-Programmable Custom Computing Machines
(FCCM), Apr. 2018, pp. 133–140.

[4] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M.
Tehranipoor, “Hardware trojans: Lessons learned after
one decade of research,” ACM Transactions on Design
Automation of Electronic Systems, vol. 22, no. 1, 6:1–
6:23, May 27, 2016.

[5] S. Adee, “The hunt for the kill switch,” IEEE Spectrum,
vol. 45, no. 5, pp. 34–39, May 2008.

[6] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A
novel technique for improving hardware trojan detection
and reducing trojan activation time,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20,
no. 1, pp. 112–125, Jan. 2012.

[7] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Ver-
iTrust: Verification for hardware trust,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 7, pp. 1148–1161, Jul. 2015.

[8] P. Kitsos, K. Stefanidis, and A. G. Voyiatzis, “TERO-
based detection of hardware trojans on FPGA imple-
mentation of the AES algorithm,” in Euromicro Con-
ference on Digital System Design (DSD), Aug. 2016,
pp. 678–681.

[9] L. Pyrgas, F. Pirpilidis, A. Panayiotarou, and P. Kitsos,
“Thermal sensor based hardware trojan detection in
FPGAs,” in Euromicro Conference on Digital System
Design (DSD), Aug. 2017, pp. 268–273.

[10] J. He, Y. Zhao, X. Guo, and Y. Jin, “Hardware tro-
jan detection through chip-free electromagnetic side-
channel statistical analysis,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 10,
pp. 2939–2948, Oct. 2017.

[11] M. Lecomte, J. Fournier, and P. Maurine, “An on-
chip technique to detect hardware trojans and assist
counterfeit identification,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 12,
pp. 3317–3330, Dec. 2017.

[12] S. Narasimhan, D. Du, R. S. Chakraborty, et al.,
“Multiple-parameter side-channel analysis: A non-
invasive hardware trojan detection approach,” in In-
ternational Symposium on Hardware-Oriented Security
and Trust (HOST), Jun. 2010, pp. 13–18.

[13] X. Zhang, A. Ferraiuolo, and M. Tehranipoor, “Detec-
tion of trojans using a combined ring oscillator network
and off-chip transient power analysis,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 9,
no. 3, 25:1–25:20, Oct. 8, 2013.

[14] C. Krieg, C. Wolf, A. Jantsch, and T. Zseby, “Toggle
MUX: How x-optimism can lead to malicious hard-
ware,” in Design Automation Conference (DAC), Jun.
2017, pp. 1–6.

[15] C. Krieg, C. Wolf, and A. Jantsch, “Malicious LUT:
A stealthy FPGA trojan injected and triggered by the
design flow,” in International Conference on Computer-
Aided Design (ICCAD), Nov. 2016, pp. 1–8.

[16] P. Swierczynski, M. Fyrbiak, P. Koppe, and C.
Paar, “FPGA trojans through detecting and weaken-
ing of cryptographic primitives,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 8, pp. 1236–1249, Aug. 2015.

[17] A. Hastings, S. Jensen, J. Goeders, and B. Hutchings,
“Using physical and functional comparisons to assure
3rd-party IP for modern FPGAs,” in International Ver-
ification and Security Workshop (IVSW), Jul. 2018,
pp. 80–86.

[18] Yosys Open SYnthesis Suite. “Project IceStorm.”
(Oct. 28, 2021), [Online]. Available: https://github.com/
YosysHQ/icestorm (visited on 10/31/2021).

9150

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

[19] F4PGA. “F4pga/prjxray.” (Jun. 23, 2020), [Online].
Available: https : / / github . com / f4pga / prjxray (visited
on 06/23/2020).

[20] CHIPS Alliance. “Chipsalliance/f4pga-xc-fasm2bels.”
(Apr. 10, 2023), [Online]. Available: https : / / github .
com / chipsalliance / f4pga - xc - fasm2bels (visited on
07/24/2023).

[21] BYU Configurable Computing Laboratory. “SpyDr-
Net.” (Jun. 16, 2023), [Online]. Available: https : / /
github.com/byuccl/spydrnet (visited on 07/27/2023).

[22] Xilinx Inc., Vivado design suite 7 series FPGA libraries
guide (UG953), 2012.

[23] Xilinx Inc., 7 series FPGAs configurable logic block
user guide (UG474), 2016.

[24] J. Luu, J. Goeders, M. Wainberg, et al., “VTR 7.0: Next
generation architecture and CAD system for FPGAs,”
ACM Transactions on Reconfigurable Technology and
Systems, vol. 7, no. 2, pp. 1–30, Jun. 2014.

[25] H. Cook, J. Arscott, B. George, T. Gaskin, J. Goeders,
and B. Hutchings, “Inducing non-uniform FPGA aging
using configuration-based short circuits,” ACM Trans-
actions on Reconfigurable Technology and Systems,
vol. 15, no. 4, 41:1–41:33, Jun. 6, 2022.

[26] T. M. La, K. Matas, N. Grunchevski, K. D. Pham,
and D. Koch, “FPGADefender: Malicious self-oscillator
scanning for xilinx UltraScale + FPGAs,” ACM Trans-
actions on Reconfigurable Technology and Systems,
vol. 13, no. 3, 15:1–15:31, Sep. 1, 2020.

10151

Authorized licensed use limited to: Brigham Young University. Downloaded on February 07,2024 at 18:53:56 UTC from IEEE Xplore. Restrictions apply.

