
Leveraging FPGA Primitives to Improve Word
Reconstruction during Netlist Reverse Engineering

McKendrick, Reilly Simpson, Corey Nelson, Brent Goeders, Jeffrey

Abstract—While attempting to perform hardware trojan de-
tection, or other low-level design analyses, it is often necessary to
inspect and understand the gate-level netlist of an implemented
hardware design. Unfortunately this process is challenging, as
at the physical level, the design does not contain any hierarchy,
net names, or word groupings. Previous work has shown how
gate-level netlists can be analyzed to restore high-level circuit
structures, including reconstructing multi-bit signals, which aids
a user in understanding the behavior of the design.

In this work we explore improvements to the word reconstruc-
tion process, specific to FPGA platforms. We demonstrate how
hard-block primitives in a design (carry chains, block memories,
multipliers) can be leveraged to better predict which signals
belong to the same words in the original design. Our technique is
evaluated using the VTR benchmarks, synthesized for a 7-series
Xilinx FPGA, and the results are compared to DANA, a known
word reconstruction tool.

I. INTRODUCTION

Understanding a low-level hardware netlist, and reverse en-
gineering the original circuit design, functionality, and intent,
is essential for several different design applications. While
such a processes can be used maliciously (e.g., to steal IP, plan
Hardware Trojans attacks), it also is essential for many “good”
applications, including Hardware Trojan detection, confirma-
tion of IP correctness, equivalence checking, detecting IP
infringement, obsolete product analysis, and more [1], [2].

Unfortunately, uncovering the high-level intent and design
of a gate-level netlist is challenging. The netlist is typically
a sea-of-gates, containing only library or device primitives,
without any module hierarchy, distinct control structures (i.e.
FSMs), groupings of signals or flip-flips into words, or larger
arithmetic units. Netlists are typically extracted from the
physical implementation; for ASICs this involves analyzing
GDSII files or delayering circuits, while for FPGAs, several
projects exist that have documented commercial bitstream
formats and offer bitstream-to-netlist tools [3]. Given this, the
netlists are absent of any net names, further challenging the
process of understanding the higher-level design structure.

Several previous works have presented approaches to recon-
struct original circuit structure, including identifying known
modules from a library [4], locating commercial IP [5], and
locating register files, counters, adders, and subtractors [6].
One component of rebuilding the original design, and the focus
of this work, is word reconstruction, which attempts to recreate
multi-bit signals and registers from individual nets and flip-
flops in the netlist [7], [8].

In this short paper we propose and evaluate an enhancement
to the word reconstruction process, specifically when targeting
FPGA netlists. Previous work [7], [8] has not leveraged

architecture-specific primitives, and the existing algorithms
only consider flip-flops and their connection patterns. In this
work we propose leveraging FPGA hard-blocks (adders, mem-
ories, multipliers) to seed the iterative word reconstruction
process, as they typically contain multi-bit signals.

We evaluate our approach on the full VTR7 FPGA bench-
mark set, and demonstrate that our enhanced approach sig-
nificantly improves upon the word reconstruction result (us-
ing the same QoR metrics from existing work). In several
benchmarks where existing work fails to provide a good word
reconstruction (ie below 80% score), we are able to improve
the result substantially, from 0.71 to 0.91, and for many other
benchmarks where existing work already provides a good
solution, we maintain the same, or slightly better, QoR.

II. BACKGROUND

There have been two major works that have presented ap-
proaches for word reconstruction, WordRev [7] and DANA [8].

WordRev, created by Li et al. [7], groups nets together
to identify functional words, looking for cones of logic with
matching boolean equations. They then iteratively propagate
these results through the netlist, considering all possible word
groupings. The approach is compute intensive, and the ex-
plored solution space grows rapidly, resulting in potentially
long runtimes. The WordRev work tests their tool against
several designs, providing runtime values, but does not provide
any quantitative results or metrics to evaluate the accuracy of
their groupings. In addition, the WordRev tool is not publicly
released, so there is no straightforward way to compare
WordRev against our proposed approach.

DANA, created by Albartus et al. [8], is another tool de-
signed to perform word reconstruction; however, this tool takes
a structural approach. DANA analyzes connection patterns
to try and estimate which nets should be grouped into a
word. This is done iteratively, by seeding candidate groupings
and then iterating forward and backward through the circuit,
continuously grouping signals by whether they connect to
common signals in other candidate groups. Multiple different
passes are performed, and a final voter chooses between
different potential groupings, giving precedence to common
groupings and larger cluster sizes. DANA also demonstrates
that by analyzing and understanding the dataflow through the
circuit, one can more easily detect larger circuit structures. For
example, after register reconstruction they look for registers
that are 256-bits in size, which enables them to locate the
boundaries of an AES256 module in the design. They in turn
use this to locate hardware Trojans by looking for suspicious

1



circuit patterns, such as unexpected data leaking out of the
encryption module. In evaluating their word reconstruction
algorithm, the DANA authors proposes two metrics, purity
and normalized mutual information (NMI) (described in more
detail in Section IV-A), to measure how accurately register
groupings match the golden netlist.

When analyzing the results of word reconstruction algo-
rithms, it is important to recognize that there is no “perfect
algorithm”, that could always create word groupings exactly
matching the original netlist. When a designer writes RTL,
they can make arbitrary decisions about how signals are
grouped into words, and may choose to write RTL where
different bits of a word have different functional or structural
behavior. For example, when designing a CPU in RTL, the
entire instruction could be grouped as a single register, or it
could be split into one register for the opcode, and one for each
opcode argument. Both RTL styles would produce the same
netlist, but with different word groupings, meaning there is a
many-to-one relationship between RTL and the resulting netlist
(i.e. there is information loss in the synthesis process). Despite
this shortcoming, we lack a better way to evaluate word
groupings, and have elected to follow the previous DANA
work in evaluating the correctness of word groupings against
the named register groupings from the netlist.

III. SOLUTION OVERVIEW

In our proposed approach, we leverage FPGA-specific
primitives to increase the accuracy of structural word re-
construction. We demonstrate this approach on a Xilinx 7-
series architecture, leveraging hard-block adders, block RAMs
and multiply-accumulate units (CARRY4, RAMB18E1,
RAMB36E1, DSP48E1). While we target this FPGA family,
the techniques can easily be expanded to other primitives and
implemented with other vendors and families.

A. Leveraging FPGA Hard-Blocks

Similar to DANA, our implementation of a word reconstruc-
tion algorithm begins by abstracting the FPGA netlist into
a weighted, directed graph, where registers are represented
as vertices and all combinational logic between the registers
is removed and represented as simple edges. Unlike DANA,
the aforementioned FPGA hard-block primitives (adder, mem-
ory, multiplier) are also preserved as vertices. Each edge is
annotated with a boolean value, indicating true if the edge
is a direct wire connection, or false if combinational logic
or other device primitives were absorbed into the edge. The
primitives IBUF, OBUF, IOBUF, BUFG, VCC, and GND are
also preserved to keep track of design I/Os and constants.

Next, the hard-block vertices are selected and their connec-
tions are examined, and registers connected to the primitive’s
I/O buses can be inferred to be belonging to the same word.
In the case of CARRY4, signals connecting to the DI and
S 4-bit inputs, as well as the 4-bit O output, can each be
considered to be part of the same multi-bit word, since this
primitive is typically used to sum two multi-bit values together,
representing the operation of DI + S = O. As such, when a

 

Fig. 1: CARRY4 block connection example

CARRY4 is encountered, and the edge is marked true (a direct
wire connection), then the registers can be grouped together
with high confidence.

As an example of this process, consider Figure 1, where the
O output pins each directly connect to a FDRE flip-flop. In this
case, the tool would correctly group these registers together,
effectively recognizing the 4-bit word c reg.

When the edge is false, then some intermediate combi-
national operations exist between the output pins and the
flip-flops, and the signals cannot be automatically grouped
together. For example, during graph construction, if a LUT6
were encountered in the netlist, then six false edges would
be added to the graph connecting input to output nodes. In
such a case where you have multiple bits influencing a single
output register, one cannot be certain exactly how the registers
should be grouped together, and so these edges are ignored at
this stage of the algorithm.

Like the CARRY4, the BRAM and DSP pins can be
similarly analyzed to infer word groupings. Of specific interest
are the data ports of the BRAM and DSP as well as the
read/write address ports of the BRAM.

B. Cascaded Hard-Blocks

In some designs, primitives are cascaded to allow for
their operation on larger word values. For example, this is
commonly done with the CARRY4, where the carry out value
of one adder is fed into the carry in pin of the next CARRY4 in
the chain. BRAMs also have an internal cascade option allow-
ing multiple memories to be combined together, into one larger
address space. When cascaded primitives are encountered, they
can be combined and abstracted into one large primitive, which
will allow the subsequent register reconstruction algorithm to
be seeded with even larger register groupings.

C. Word Reconstruction

Once the hard-block primitives are all analyzed, they are
removed from the graph structure. Next, our word reconstruc-
tion algorithm proceeds to establish word groupings, using a
very similar algorithm to DANA.

In our implementation, vertices are first grouped into stages
based on logic depth to the nearest output pin. The algorithm
then iterates through the stages, examining each register. The
input connections to the register are collected and their cluster

2



status is valued. The value is a string that represents if any
of the connected vertices are clustered, and what clusters are
present. Then, all registers in the stage are compared and
those with similar values are marked as belonging to the same
cluster. The outputs of the stage are then analyzed in a similar
way. The algorithm continues like this stage by stage until the
design inputs are reached.

This technique is very similar to DANA, except that they
perform multiple passes with different starting conditions, and
use a voter to select from different candidate word groupings.
Our approach utilizes the primitive information to seed group-
ings, so it doesn’t make as much sense to explore different
starting conditions (in addition, the DANA paper mentions that
there are marginal benefits with increased number of passes).

IV. RESULTS

A. Evaluation Metrics

The QoR of the register clustering is determined by compar-
ing the resultant register clusters with the actual clusters from
the netlist, where registers with the same name in the netlist
are assumed to be the same word. The authors of DANA used
two metrics to evaluate cluster quality: Purity and Normalized
Mutual Information (NMI) [8]. Both metrics are a number
between 0.0 and 1.0, with 1.0 being a perfect score [9].

Purity evaluates individual cluster accuracy. Each resultant
cluster is marked as correlating to a word from the golden
netlist, depending on which word most frequently appears in
the cluster. The purity value of this cluster is calculated as
the percentage of signals in the cluster that actually belong to
this word from the golden netlist. The score of all clusters is
then averaged together. However, Purity alone is an imperfect
metric since purity is 1.00 when every register bit is assigned
to its own cluster [9], essentially rewarding no clustering
effort.

NMI is a technique to compare two partitionings, and is
based on the Mutual Information concept from information
theory [9]. NMI compares cluster quality with the whole
solution space. Unlike purity, the NMI score is influenced by
whether the quantity of proposed clusters equals the quantity
of solution clusters, whether the general sizes of the proposed
clusters equals the sizes of the solution clusters, and whether
the content inside each cluster is equal to the solution clusters.
The only way to get a perfect score with the NMI metric is to
group the clusters exactly the same as the solution clusters [9].

To summarize, low NMI can represent an inaccurate total
number of clusters, bad cluster sizing, or registers incorrectly
grouped together. Low purity is only caused by registers
incorrectly grouped together. Higher purity can be manipulated
by restricting cluster size to be very small, but this will cause
the NMI score to be low since cluster sizes/quantity does
not accurately represent the solution space. A higher NMI
is not necessarily achieved by forcing larger clusters, since
NMI, like purity, is negatively influenced by incorrect register
associations. Purity can help to understand the NMI metric.
For instance, high purity but low NMI implies that registers
are clustered together well, but the total number of registers

NMI Purity
Min Max Avg Min Max Avg

DANA [8] 0.643 0.968 0.803 0.134 1.000 0.641

Our Hier. Pass 0.000 0.975 0.800 0.145 0.992 0.590
w/ Primitives 0.803 1.000 0.917 0.580 1.000 0.816

TABLE I: Summary of Results

and/or register sizes is inaccurate. The NMI score would likely
be improved by combining some clusters together. A high
NMI with low purity means quantity/size of clusters is a
fairly accurate representation of the solution, but the individual
registers in the grouping are poorly chosen.

B. Benchmarks
Both WordRev [7] and DANA [8] test their approach using

selected designs from OpenCores.org. While the DANA tool
(and our work, without the hard-block optimization) achieve
an average score greater than 0.9 for these designs, most
benchmarks thus tested are fairly small, and use few FPGA
primitives. When we tested the tools with larger and more
varied designs, we found that average scores were often much
lower.

Given this, we elected to evaluate our approach using the
VTR7 [10] benchmark suite, which contains larger, more
varied designs. In addition, these designs “come from a variety
of real applications” [10] and are commonly used in the FPGA
research community. Larger designs do increase the runtime of
the algorithm, but all of the designs took less than 10 minutes
to analyze.

C. Purity and NMI Results
Table I shows that DANA achieves an average NMI score

of 0.80 and an average purity score of 0.64 on the VTR bench-
marks. Our project’s hierarchical analysis, performed without
our proposed primitive analysis, achieves similar results, with
an average NMI score of 0.80 and an average purity score of
0.59. When we include our proposed improvement, leveraging
FPGA hard-blocks, the NMI increases to 0.92 (14.2% im-
provement) and purity to 0.82 (27.3% improvement). Our work
was particularly helpful in cases where the original algorithm
struggled: the minimum NMI score was raised from 0.64 to
0.80, and minimum purity from 0.13 to 0.58.

Figure 2 shows the QoR scores for each of the benchmarks.
Each benchmark has a bar representing DANA’s score, and this
project’s analysis with and without the hard-block primitive
optimization. Note that there are no cases where our enhance-
ment causes a significant drop in quality of the result. In two
cases, there is a marginal drop in NMI score; however, this
drop is less than 2% and in both cases the purity score is raised
by 2-4%. Many benchmarks saw significant improvement in
both scores, with 12 designs improving by at least 20% in
either NMI or Purity.

D. Analysis
We analyzed the register groupings with and without our

hard-block primitive pass and found that the primitive pass had

3



(a) NMI

(b) Purity

Fig. 2: NMI and Purity scores for DANA, and our work, without and with our hard-block primitive pass.

significant impact on the result; on average, 50% of register
groupings were modified in some way. It is worth noting
that the hard-block primitive pass does more than just group
registers connected directly to primitives, since these results
are used to seed the hierarchical analysis, their influence can
be far reaching. This means the results from the primitive pass
can have a butterfly effect on the rest of the analysis.

We investigated how the number of hard-blocks in the
design affect Purity and NMI scores, and found that a high
number does not necessarily guarantee large improvement. For
instance, in blob merge there is a 2:1 ratio between CARRY4s
and registers (in fact, it is the only design in the benchmark
suite where the hard-block primitives outnumber the registers),
and while the achieved NMI score is quite high, it is still fairly
good without the primitive pass. We noticed that in many cases
a CARRY4’s output feeds directly into the inputs of other
CARRY4 blocks; with no registers in-between, there is not
much improvement to be made.

Other factors that can negate the advantage brought by the
primitives is the complexity of the design. The words in simple
designs can be deduced rather easily, and thus the words
seeded by the primitive analysis have little influence. Slight
improvement is still possible, since the primitive analysis

causes a pre-grouping to occur that affects the propagation
of words in the hierarchical stage.

Naturally, the two designs with the least number of hard-
block primitives per register, stereovision3 and ch intrinsics,
showed zero improvement.

V. CONCLUSION

Utilizing FPGA hard-blocks in word reconstruction provides
improvement over existing hierarchical analyses algorithms.
While this project demonstrates its effectiveness on primitives
found in Xilinx 7-series chips, the methods can be expanded
to other hard-blocks, like shift registers, and to other vendors.

REFERENCES

[1] S. E. Quadir, J. Chen, D. Forte, et al., “A survey on chip to system
reverse engineering,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 13, no. 1, 6:1–6:34, Apr. 13, 2016.

[2] E. Cahill, B. Hutchings, and J. Goeders, “Approaches for FPGA
design assurance,” ACM Transactions on Reconfigurable Technology
and Systems, vol. 15, no. 3, 28:1–28:29, Dec. 28, 2022.

[3] H. Yu, H. Lee, S. Lee, Y. Kim, and H.-M. Lee, “Recent advances in
FPGA reverse engineering,” Electronics, vol. 7, no. 10, p. 246, Oct.
2018.

[4] W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using
behavioral pattern mining,” in International Symposium on Hardware-
Oriented Security and Trust, Jun. 2012, pp. 83–88.

4



[5] C. Simpson, “Towards trojan detection from a raw bitstream,” Theses
and Dissertations, Mar. 23, 2022.

[6] P. Subramanyan, N. Tsiskaridze, W. Li, et al., “Reverse engineering
digital circuits using structural and functional analyses,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 2, no. 1, pp. 63–80,
Mar. 2014.

[7] W. Li, A. Gascon, P. Subramanyan, et al., “WordRev: Finding word-
level structures in a sea of bit-level gates,” in International Symposium
on Hardware-Oriented Security and Trust (HOST), Jun. 2013, pp. 67–
74.

[8] N. Albartus, M. Hoffmann, S. Temme, L. Azriel, and C. Paar, “DANA
universal dataflow analysis for gate-level netlist reverse engineering,”

IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, pp. 309–336, Aug. 26, 2020.

[9] C. D. Manning, P. Raghavan, and H. Schütze, “Evaluation of cluster-
ing,” in Introduction to Information Retrieval, Cambridge University
Press, 2008.

[10] J. Luu, J. Goeders, M. Wainberg, et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 7, no. 2, pp. 1–30, Jun.
2014.

5


