
1

Investigating How Software Characteristics
Impact the Effectiveness of Automated Software

Fault Tolerance
Benjamin James, Michael Wirthlin, and Jeffrey Goeders

Abstract—A number of publications have examined automated
fault tolerance techniques for software running on commercial
off-the-shelf microcontrollers. Recently, we published an auto-
mated compiler-based protection tool called COAST (COmpiler
Assisted Software fault Tolerance), a tool that automatically in-
serts dual- or triple-modular redundancy into software programs.

In this work we use COAST to explore how the effectiveness of
automated fault protection varies between different benchmarks,
tested on an ARM Cortex-A9 platform. Our hypothesis is that
certain benchmark characteristics are more likely than others to
influence the effectiveness of automated fault protection.

Through neutron radiation testing at the Los Alamos Neutron
Science Center (LANSCE), we show cross-section improvements
vary from 1.6x to 54x across eight benchmark variants. We then
explore the characteristics of these benchmarks, and investigate
how properties of these benchmark may impact the effectiveness
of automated fault protection. Finally, we leverage a novel fault
injection platform to isolate two of these benchmark character-
istics, and validate our hypotheses.

Index Terms—Software fault tolerance, single event upset
(SEU), silent data corruption (SDC), soft errors.

I. INTRODUCTION

Radiation hardened processors are typically much more
expensive and offer lower performance than commercial off-
the-shelf (COTS) equivalents. This provides an incentive for
finding software-based techniques that increase the fault tol-
erance of COTS microprocessors so they can be used in high
radiation environments, such as space.

Recent studies have explored different methods for pro-
viding programs with fault tolerance through purely software
approaches. A common way of providing fault tolerance is
through replicating program instructions and/or variables. By
inserting one or two replicas of every software operation, faults
can be detected and reported or corrected at runtime. There is
certainly a performance cost for this type of protection, but this
kind of approach has been shown to be successful at reducing
the overall error rate, and increasing the mean work to failure
(MWTF) [1]–[4].

There are different ways of adding duplicated and triplicated
instructions, such as modifying the architecture assembly code
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by hand [1], [2]. As this is not the most ideal solution,
other works have studied automated methods of applying
mitigation techniques [1], [5]–[10]. However, to the best of
our knowledge, none of these works have provided a publicly
available, open-source tool that others can use to replicate the
work, or to use on new projects.

In July 2018, we released COAST (COmpiler Assisted
Software Fault Tolerance), a compiler-based tool that automat-
ically applies existing software mitigation techniques to user
software. The tool is open-source, and publicly available at
https://github.com/byuccl/coast. Since COAST is much more
automated and flexible than previous work in this area, it
is suitable as a tool to explore the effectiveness of software
protection on different processing platforms and benchmarks.
In recent work we showed how software protection could be
applied to several different architectures (MSP 430, ARM 32-
bit and 64-bit, and RISC-V) [11], [12]. Across different target
architectures, we saw decreases in cross-section ranging from
4x–106x.

Most of the previous works that explored automated pro-
tection provided experimental results on just a couple key
benchmarks. The automated nature of our work allows us
to explore the effectiveness of software protection on a wide
range of benchmarks. In this work we aim to explore and
understand what characteristics of particular benchmarks make
them more apt for protection through data and instruction
replication. Rather than varying the platform, we vary the
program. The results from testing multiple benchmarks will
allow us to better understand how the effectiveness of auto-
mated protection changes from benchmark to benchmark, and
ideally help designers to understand why automated protection
may or may not provide substantial reliability improvements.

While we would ideally apply our tool to tens or hundreds of
different C programs and build an accurate predictive model,
this is not feasible. Limited access to radiation testing facilities
combined with the relatively low frequency of errors means
we must restrict the number of benchmarks to a small sample
set.

The main contributions of this paper are:

• Experimental testing of multiple C programs at the Los
Alamos Neutron Science Center (LANSCE). The plat-
form under study, the 32-bit Xilinx Zynq ARM Cortex-
A9, had 8 benchmarks tested on it. Across all these
benchmarks, we saw reduction in cross-sections from
1.6x–54x.

https://github.com/byuccl/coast
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• An analysis of the experimental results, from which we
draw insight into benchmark characteristics that may
commonly impact software-based fault protection.

• A fault injection framework that is used to isolate and
validate two benchmark properties that impact fault pro-
tection effectiveness.

The paper is organized as follows: Section II gives more
background on related work and the COAST tool. Section III
outlines the way in which we tested our benchmarks in a
radiation beam and shows the results thereof. Section IV ana-
lyzes the radiation test results and benchmark characteristics.
Section V details our subsequent fault-injection study, and
Section VI provides conclusions.

II. BACKGROUND

A. Related Work

There have been several works which have investigated
adding fault mitigation to software programs. Error Detec-
tion by Duplicated Instructions (EDDI) [5] first presented
techniques for fine-grained duplication of instructions. These
techniques duplicate all instructions and variables while main-
taining a single control-flow, which requires synchronization
of data-flows before any control-flow branching or function
calls. This technique is also known as Duplicate With Compare
(DWC), and allows for detecting errors at the cost of increased
code size and execution time.

Later work introduced SWIFT-R [9], which extended this
type of technique to triplication, allowing for not only error
detection, but also correction. This is similar to Triple Modular
Redundancy (TMR) in hardware, and is often referred to by
this name in software as well. Software TMR has an even
higher cost in code size and execution time than DWC, but
with the added benefit of being able to tolerate errors without
a reset or rollback.

There have been other works which explored different
replication and synchronization rules, as this is an important
factor when evaluating trade-offs between increased run time
and fault coverage. Chielle et al.[13] presented a set of
rules that can be used to guide decisions about replication
and synchronization. The COAST tool implements software
protection based on some of these rules.

Although there have been many recent works exploring dif-
ferent variations and optimizations on these basic DWC/TMR
techniques [1]–[4], [7], [8], [14]–[19], there is no other current
tool that offers the automation and flexibility of COAST. These
previous works have used hand-modified assembly code, re-
lied on specific architectures or assembly code formats, or
leveraged specific processor features to obtain fault tolerance.
In addition, none of these works are available as open-source
tools, and very few have been tested in an actual high-radiation
environment.

B. COAST

Our software protection tool, COAST, automatically adds
data-flow protection to arbitrary user programs. The default
configuration (and the configuration used in our experiments)

do :
l d r0 = i

r1 = sub r0 , 1

r2 = cmp r1 , 0

b r neq r1 do

(a) Original code

do :
l d r0 = i
ld r10 = i copy
ld r20 = i copy2
r1 = sub r0 , 1
r11 = sub r10, 1
r21 = sub r20, 1
r2 = cmp r1 , 0
r12 = cmp r11, 0
r22 = cmp r21, 0
r3 = cmp r2, r12
r4 = select r3, r2, r22
br neq r4 do

(b) TMR code

Fig. 1: Code before and after TMR mitigation, from [11]

is based on the VAR3 scheme from [6], which is to replicate all
compute and memory load/store instructions, and to synchro-
nize as necessary before control flow instructions. However,
the COAST tool is very configurable; it supports both DWC
and TMR modes, as well as changing some of the replication
and synchronization rules. Synchronization consists of (for
DWC) a comparison of the two data flows, or (for TMR) a
voter which determines the correct value based on the three
copies. The replication of existing instructions and insertion
of synchronization instructions is fully automated as part of
the program compilation.

Figure 1 shows an example of what some assembly code
would look like before and after it is run through COAST. The
bold text shows the changes made by our compiler pass.

In our past work, we focused on proving the usefulness
of COAST [20], or showing its usefulness on multiple target
architectures [11]. In this work, we aim to show which types
of benchmarks can benefit the most from being protected with
software techniques.

III. RADIATION TEST

Radiation testing offers a realistic view into the effectiveness
of fault mitigation techniques; however, the high cost and
relatively low availability of testing facilities often means
that only a few system configurations can be evaluated. In
past work we observed that fault mitigation was much more
effective on some benchmarks than others.

The goal of this test was to evaluate several benchmarks on
a single platform, to gain an understanding of what software
characteristics are present in benchmarks which benefit more
from software-based fault protection. We tested eight different
benchmarks executing on three identical Xilinx PYNQ de-
velopment boards. Testing was performed at the Los Alamos
Neutron Science Center (LANSCE) over the span of five days.

A. Methodology

1) Device Under Test: The DUT was a ZYNQ XC7Z020
SoC FPGA, which contains an embedded dual-core 32-bit
667MHz 28nm ARM A9 processor. There is a 32 KB instruc-
tion cache, 32 KB data cache, and a 512 KB unified cache per
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Fig. 2: Neutron beam test setup

core (non-ECC). Only one core of the processor was used in
the test, and the FPGA fabric was not utilized or tested. The
platform was configured as a bare-metal system, with only
essential Board Support Package (BSP) software. The 30L
flight path (Ice House) was used, and the three boards were
placed 99, 101 and 106cm from the neutron detector. These
distances were accounted for when determining the fluence
received by each board during the experiments. Each board
was placed so the A9’s external DRAM chip was outside of
the 2” diameter neutron beam. Figure 2 provides a photo of the
setup, which includes boards from several other experiments.

During the experiment, each benchmark runs some compu-
tation operation, then checks the result against a known golden
value. In cases where the program output is a small value,
such as crc32, the golden value is the exact program output.
For other benchmarks, the golden value is a hash of a larger
output (the MxM matrix multiplication benchmark hashes the
resultant matrix), or in the case of the qsort benchmark, the
code ensures the result is sorted. This approach to output
validation aims to minimize cases where the golden value,
which isn’t protected, can be corrupted while the program
executes.

The benchmarks repeatedly execute the same computation
operation, periodically printing a heartbeat message via UART,
which is monitored by a computer that is outside the path of
the neutron beam. If the computed value does not match the
golden value, the program immediately prints an error message
to the monitoring computer. In these cases the controlling
system power cycles the board and reprograms the software.
Other events can also trigger a reprogramming, including a
malformed output, or a heartbeat timeout.

In the experiments described in this paper, we employ
the TMR option of COAST, which inserts voter opera-
tions at branch points in the program. We also enable the
-countErrors option which allows for enhanced voter

code that tracks whether any fault was detected and corrected.
While this introduces some extra overhead that would not be
used on a deployed system, it provides useful data for our
experiment. When faults are detected, they are reported to the
controlling system, and they also trigger a power cycle.

B. Benchmarks

We used eight different benchmarks in our test, as outlined
below:
crc32: A 32-bit Cyclic Redundancy Check. This computes the

hash of a statically defined table of 32-bit values.
dijkstra: From the MiBench test suite, this finds the shortest

path between a predefined set of nodes.
matrixMultiply: Matrix multiplication, tested with two sizes:

Fit L1, where the matrices were sized to all fit in the L1 cache
(when triplicated), and Fit L2, where they likewise fit in the
L2 cache.

nanojpeg: A simple JPEG decoder1; input data is a JPEG
image converted to a C array.

qsort: Sort an array of floating point numbers. Tested in two
configurations: Library, where we use the C standard library
implementation of qsort, which is notably not protected
by our tool; and Custom, which uses our own code for the
sorting kernel, which allows protection to be enabled on the
entire algorithm.

sha256: Computes the SHA-256 hash of a statically defined
array.
Each benchmark was compiled and tested using an origi-

nal unmitigated version, and a TMR’d version produced by
COAST.

C. Radiation Test Results

The results from our experiment are shown in Table I. The
first column lists the benchmark and protection configuration.
The next column lists the total Fluence received for each
benchmark configuration, which was calculated by correlat-
ing timestamps for when each benchmark was running with
timestamped flux measurement logs from LANSCE. The next
set of columns list the different abnormal statuses encountered
during repeated benchmark execution. The Faults column lists
the number of times the TMR voters in the code detected
and corrected a fault. Errors are the number of times the
benchmark computed a result which did not match the golden
value. A Hang was recorded when the benchmark heartbeat
stopped responding for a significant amount of time (about
10x the expected heartbeat interval). An Invalid Status was
recorded any time the UART message from the benchmark
did not match the expected regular expression format. Any of
these unsuccessful runs triggered a reset of the board.

The columns Code Size and Runtime are for comparing the
overhead required for COAST protection against the original
version of the benchmark. Code Size is the size of the compiled
ELF file, measured in KB.

The column Cross Section measures the error rate according
to Equation (1).

1based on https://keyj.emphy.de/nanojpeg/

https://keyj.emphy.de/nanojpeg/
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TABLE I: Neutron beam test results

Configuration
(Bench, Options)

Fluence
(n/cm2)

Faults
(TMR
Fixed)

Errors
(SDC)

Hangs/
Invalid
Status

Code Size
(KB)

Runtime
(ms)

Cross
Section
(cm2)

MWTF

crc32, Unmit 2.41× 107 N/A 5 1/1 159 - 936 - 2.08× 10−7 - -
crc32, TMR 2.6× 108 20 0 11/1 191 ↑ 1.201x 1162 ↑ 1.241x **3.84× 10−9 ↓ 53.99x ↑ 43.49x

dijkstra, Unmit 1.14× 109 N/A 0 76/2 171 - 478 - **8.81× 10−10 - -
dijkstra, TMR 6.25× 109 13 0 356/1 191 ↑ 1.117x 2414 ↑ 5.05x **1.6× 10−10 ↓ 5.51x ↑ 1.09x

MxM, Unmit, L2 1.23× 108 N/A 24 12/0 307 - 212 - 1.95× 10−7 - -
MxM, TMR, L2 4.97× 108 101 7 47/0 536 ↑ 1.75x 640 ↑ 3.02x 1.41× 10−8 ↓ 13.85x ↑ 4.58x

MxM, Unmit, L1 8.06× 108 N/A 3 36/0 209 - 1528 - 3.72× 10−9 - -
MxM, TMR, L1 1.14× 1010 14 1 519/3 228 ↑ 1.09x 2897 ↑ 1.9x 8.8× 10−11 ↓ 42.28x ↑ 22.3x

nanojpeg, Unmit 5.85× 109 N/A 47 324/1 187 - 324 - 8.04× 10−9 - -
nanojpeg, TMR 7.27× 109 119 22 329/1 241 ↑ 1.29x 2503 ↑ 7.73x 3.02× 10−9 ↓ 2.66x ↓ 2.91x

qsortLib, Unmit 8.62× 109 N/A 2 464/4 290 - 77 - 2.32× 10−10 - -
qsortLib, TMR 6.85× 109 13 0 333/2 429 ↑ 1.48x 189 ↑ 2.45x **1.46× 10−10 ↓ 1.59x ↓ 1.54x

qsortCustom, Unmit 5.25× 109 N/A 10 255/0 290 - 277 - 1.9× 10−9 - -
qsortCustom, TMR 2.29× 1010 22 0 1119/0 429 ↑ 1.48x 880 ↑ 3.18x **4.37× 10−11 ↓ 43.61x ↑ 13.73x

sha256, Unmit 5.21× 107 N/A 4 2/241 138 - 14 - 7.68× 10−8 - -
sha256, TMR 2.13× 108 30 2 10/0 215 ↑ 1.56x 57 ↑ 4.07x 9.37× 10−9 ↓ 8.19x ↑ 1.95x

**No errors observed, so this is calculated given one error (assuming the worst-case, where an error could be observed on the next neutron).

Cross Section =
Errors (SDC)

Fluence
(1)

The results show that the COAST TMR protection reduces
cross-section by 1.0x to 54x, indicating that the characteristics
of the benchmark significantly influence the effectiveness of
the fault mitigation. The cross-section results from Table I are
summarized in Figure 3, which shows the cross-section for
each of the benchmarks with 95% confidence error bars.

Along with cross-section, we have the indicator Mean Work
To Failure (MWTF) that puts cross-section in the context of
the run-time overhead. In other words, benchmarks which run
longer have more time during which they can be upset. The
equation for calculating MWTF is given by Equation (2).

MWTF =
amount of work completed

number of errors encountered
= (raw error rate · AVF · execution time)−1

(2)

When taking run-time into consideration, it can be seen that
while most benchmarks improved in MWTF (1.1x–43x), there
were a couple that degraded (nanojpeg and qsortLib),meaning
that the improvement in cross-section is not sufficient to
overcome the increased fault rate due to the longer runtime.

IV. BENCHMARK ANALYSIS

When we began this test, we had hopes of using the data to
construct a model from which to predict the fault coverage
of future programs when protected by COAST. However,
it quickly become apparent that there are simply too many
factors at play to develop an accurate predictive model, and
doing so would require many more benchmarks and hours of
radiation testing, which would be infeasible. However, it was
still our intention to gather as much insight into the data we
were able to collect, to help learn some lessons for future work,

and gather insights that may be helpful for future engineers
attempting to apply automated software protection.

The approach we took was to analyze the set of bench-
marks we tested in radiation, to determine whether we could
find benchmark properties that would correlate with the im-
provement in reliability when automated software protection
was applied. More specifically, we tried to identify a set of
benchmark properties that correlated with the factor decrease
to cross-section when automated protection was applied to
our benchmark set. To do this, we identified a large set of
benchmark characteristics, and then determined which subset
of these provided the best fit using multiple linear regression.

We recognize that our benchmark set is limited, and with
small data sets it may be easy to infer correlation between
data when it does not really exist, so we choose to use these
identified characteristics to motivate further fault injection
testing to validate that these characteristics impact the effec-
tiveness of automated protection. These fault injection results
are presented in Section V.

A. Characteristic Set

The set of characteristics we found to be most impactful
were the following:

1) Peak Heap Usage (in kbytes) Negatively correlated with
effectiveness of fault protection.

2) Static Memory Size Size of global variables in memory
(.data and .bss section counted, in kbytes) Positively
correlated with effectiveness of fault protection.

3) Sync Points/s How many times a synchronization voter
was hit per second of program execution.Positively cor-
related with effectiveness of fault protection.

4) Fault Tolerance of Unprotected Benchmark This char-
acteristic measures the cross-section (cm−2) of the unmit-
igated program, determined from our experimental data.
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Fig. 3: Benchmark Cross-Sections, 95% confidence interval

Unmitigated cross-section is positively correlated with
effectiveness of fault protection.

There were several other benchmark characteristics that
we examined that either showed no meaningful correlation
for our benchmark set, or were redundant when considered
with other properties. These characteristics included maximum
resident set size (memory), read/write ratio, error rate from
fault injection on the register file, and all combinations of
cache access characteristics for each of the L1 and L2 caches.
Although these were not influential for the data set we obtained
from the radiation testing, it is certainly possible that some of
these characteristics could affect the applicability of our fault
mitigation techniques if other benchmarks were used, or if a
more thorough regression was performed that included a larger
data set, or more characteristics.

Furthermore, our set of characteristics is not meant to be
an exhaustive list of meaningful benchmark properties. It is
very possible that there are other benchmark properties that
we failed to identify that may serve as good predictors of
the effectiveness automated fault protection. However, we feel
there are still meaningful design lessons to be learned from
the characteristics we analyzed.

We now discuss each of these characteristics in greater
detail:

B. Peak Heap Usage

Our results indicated that an increase in heap usage nega-
tively correlated with the effectiveness of our automated fault
protection. Peak heap usage was obtained using the dynamic
analysis tool massif, from the valgrind tool suite. In

our benchmark set, only a few programs used the heap,
with nanojpeg and qsort-Library being the largest
users. Since the Static Memory Size positively affected cross-
section performance, we concluded that it was not actually
the memory usage itself that was the primary issue, but rather
the calls to malloc, and the way that it manages heap
memory. It seems that the more often malloc is called, the
less effective COAST is at protecting the code. There are a
couple reasons we expect this is the case: 1) since malloc
is a library function, it cannot be protected by COAST;
2) even when the memory regions are passed back to the
protected code, malloc’d regions have special header/footer
metadata sections that COAST cannot synchronize. These
metadata sections are used by subsequent calls to malloc
and free to determine how each block of memory should be
managed. If a fault occurs in any of these special regions, it
is likely unrecoverable. Based on this, we believe it is best
to avoid using dynamic memory allocation when wanting to
perform software-based fault mitigation. As a second point
of reference, the JPL coding standard strongly discourages
dynamic memory allocation.

C. Static Memory Size

Static memory usage was determined by inspecting the
program executables using the readelf utility and observing
the sizes of the .data and .bss sections. The positive cor-
relation indicates that we expect fault tolerance effectiveness
to increase as the amount of memory set aside for variables
increases. In our test platform, the main memory consists of
a large DRAM chip, which is outside of the beam path and
naturally more resistant to radiation-based upsets than SRAM
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[21]. However, data in the processor caches is still highly
susceptible to faults, and our previous test results indicate
that COAST is effective at protecting values that reside in
caches [12]. Furthermore, COAST, and other tools like it
that apply protection through data replication are inherently
designed to protect against data upsets. These approaches do
not target upsets that could happen to control-flow elements
such as the PC register, return values on the stack, etc. Since
these data-replication approaches are designed to target upsets
in data memory, it is not surprising that as programs become
more data-heavy, and data sets increase in size, these tools are
more effective at protecting against upsets.

To be more precise, although this characteristic is called
“static memory size”, it is actually the total size of the .data
and .bss sections of the ELF file. These sections represent
the majority of the data variables, besides those that are
allocated from the .heap section, which is described in the
previous characteristic. In summary, we believe the more data
variables there are, the better able COAST is at protecting the
program.

Some of this behavior may be due to the cache config-
uration of the platform under test. In our previous radiation
experiments [12], we tested the PYNQ board with and without
caches enabled. The error rate with the caches enabled was
noticeably higher than the error rate with the caches disabled.
This means that the errors are more likely to occur in the
caches than in main memory or the processor registers. So
COAST is helpful in this case because the cross section is
so much higher with the caches enabled that there’s plenty of
room for improvement. It is possible that a different memory
hierarchy configuration would have different behavior under
a high radiation environment. When application designers are
considering using automated protection to provide fault toler-
ance, they will need to take these architectural features into
account when anticipating whether automated fault protection
will be effective.

D. Synchronization Points/s
Synchronization points, or voters, are locations in the code

where the automated fault protection has inserted operations
that inspect the redundant copies of a piece of data and vote
on which value should be propagated into the future.

The number of synchronization points encountered during
normal execution was determined by modifying our compiler
tool to automatically instrument the code such that it would
increment a global counter each time a synchronization point
was encountered. This number was then divided by the pro-
gram execution time.

Our results suggest that benchmarks that synchronize more
often will see more benefit from our protection techniques.
The reason is due to the granularity of replication afforded by
COAST. The data flow is replicated at the instruction level,
so any data errors could be checked for as often as every 3
cycles. Although this is somewhat extreme, the general rule is,
the sooner the error is detected and corrected, the less chance
it has of propagating through the system.

One thing to keep in mind is that it is possible to have
too many sync points. Although synchronization allows the

TMR’d code to detect/correct errors, it does introduce a
potential single point of failure. The code that does the voting
is vulnerable to upsets, which represents a failure mode that
did not exist in the original, unmitigated version of the code.
Analyzing these sync points would be very difficult, as it’s
not as straightforward as simply measuring the memory usage
as in other predictors. The sync points can vary distinctly in
quantity, type (data store vs branch comparison), and place-
ment. However, it appears that with the benchmarks tested,
we did not exceed the ratio of normal code to synchronization
code that would cause it to perform worse.

E. Fault Tolerance of Unprotected Benchmark

Our model is designed to measure improvement to cross-
section; however, it’s important to note that if the benchmark
was already inherently fault tolerant, there may be fewer
opportunities for COAST to improve its cross-section.

We used the radiation test cross-section results from the un-
protected benchmarks to determine how naturally susceptible
each benchmark was to upsets. Or put another way, the cross-
section of the unmitigated benchmark provides indication of
how likely an upset will manifest as an error in the program
output. The larger the cross-section, the less fault tolerant
a benchmark is, and thus, there are more opportunities to
improve reliability through automated fault protection. On the
other hand, if a benchmark has very low cross-section, it may
already naturally mask faults, and the runtime and memory
overheads of imposing automated fault protection may not be
worth it.

An example of this is seen in the quicksort benchmarks:
our golden checking code ensures that the values were sorted
correctly; however, it does not actually check that no bits were
flipped. Thus, many faults could be naturally masked. While
this may not be desirable for an actual sorting benchmark,
it would likely arise in other benchmarks, such as machine
learning algorithms which have been shown to be somewhat
fault tolerant [22].

V. VALIDATING CHARACTERISTICS THROUGH FAULT
INJECTION TESTING

In order to validate some of the trends we observed in our
radiation testing, we devised a set of experiments to try and
isolate a couple particular benchmark characteristics, and then
use fault injection testing to determine how the changes impact
the effectiveness of our automated protection scheme.

A. Fault Injection Experiments

We created two different fault injection experiments:
1) Matrix Multiply Size: We modified our matrix multi-

plication benchmark to vary the sizes of the input matrices.
These matrices are stored entirely in static memory, so this was
done to validate our observation that our automated protection
approach is more effective on benchmarks with larger data
sizes. In this experiment we tested four different matrix sizes:
30x30, 75x75, 120x120 and 180x180. In each case we created
an unmitigated version of the benchmark, and then a protected
version where TMR protection was applied to the code.
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In this experiment we are interested in observing whether
the decrease in error rate obtained by TMR protection does
indeed improve as the matrix size increases.

2) Inherent Benchmark Fault Tolerance: The other experi-
ment we performed is designed to explore our observation that
benchmarks which already mask upsets will not see as much
improvement with TMR protection.

In this case we modified our qsortLib benchmark. In the
original version, an unsorted array is input into the function,
and the quick sort algorithm sorts the values. The golden
checking code at the end of the benchmark checks that the
values in the array are indeed in sorted order. It is important
to recognize that this approach will inherently mask many
upsets. This is the case for a couple reasons. First, if an array
entry is sorted into place, and then a bit is flipped, it may
often still be in sorted order (especially if a lower order bit
was flipped). In addition, if a bit is flipped in an array entry
before it is sorted into place, the algorithm may still produce
a sorted array, even though the final array may be different
than the original data set.

We then took this fault-tolerant version of quick sort, and
modified the golden checking code to instead produce a hash
of the sorted values. If this hash did not exactly match a golden
hash value, an error is reported. This removes the natural fault
tolerance of the algorithm, and will instead report an error if
any single bit of the array data is modified.

B. Fault Injection Framework

To evaluate these benchmark characteristics we performed
fault injection using our own custom-designed fault injection
platform, PACIFIC (Platform for ACtive Injection of Faults In
a Campaign). This framework, which we are publicly releasing
as part of our COAST tool (https://github.com/byuccl/coast),
approximates radiation testing using randomly injected faults
into software while it is executing. Our fault injection tool
uses QEMU, a popular machine emulator, to perform fault
injections at random locations in memory, and at random
points in time during program execution.

While many other fault injection tools exist [23]–[27], our
fault injection framework is noteworthy for a few reasons:
1) It leverages custom QEMU plugins, rather than requiring
modifications to the QEMU source code like previous tools,
2) it supports fault injection on bare metal programs, 3) fault
injections are granular to the processor-cycle level, and 4) it
is specifically designed to allow simulating fault injections in
the processor cache.

Testing is done in the form of a fault injection “campaign”,
where the user specifies 1) the executable to be tested, 2) the
section to be targeted, and 3) the number of faults to inject.
The campaign supervisor will manage then QEMU and GDB
instances and inject the specified number of faults, randomly
distributed across the bits in the desired section. This is done
over multiple runs of the program, where on each execution,
the processor is paused and GDB is used to flip a single bit
before execution is allowed to continue. If execution of the
program does not finish, there is a watchdog which will detect
if the program has gone on too long so it can be forcibly ended.

The different possible results are: success, error detected, fault
corrected, invalid output, and timeout. Figure 4 provides a
system diagram of our fault injection framework.

In the experiments for this paper, we specifically chose
to target the processor caches, since the bits in the caches
represent a significant target for radiation-induced upsets [28],
[29], and our previous radiation testing on the same plat-
form [30] indicated that cache upsets were responsible for a
large fraction of our errors.

Our framework is able to specifically target caches by using
a QEMU plugin that “subscribes” to execution of all data load
and store instructions, and will update an internal model of
the processor caches. It maintains a model of what addresses
in memory are resident in cache at any point of program
execution, allowing us to inject faults specifically into these
memory addresses.

The QEMU plugin system is also leveraged to enable
cycle-accurate injection points. This second QEMU plugin
subscribes to instruction execution events, allowing the plugin
to monitor each time an instruction is executed. This means
we can randomly inject after any number of instructions,
and provides much finer control and better distribution than
simply sleeping the process for a random amount of time and
then pausing execution. This fined-grained approach does add
significant runtime overhead, and means that thorough fault
injection campaigns can take hours or days to complete.

C. Fault Injection Results

The results of the fault injection experiments are provided
in Table II.

The variations on the matrix multiplication benchmark con-
firm our hypothesis that COAST will provide more protection
against errors as the more the program uses static memory.
The error rate decreases for the 30x30, 75x75, 120x120
and 180x180 matrix sizes are 12x, 354x, 1491x and 2940x
respectively. These values show COAST is highly effective at
protecting against upsets in the cache, and the effectiveness
increases with data size. However, it is important to recognize
that fault injection does not perfectly reflect real radiation
effects, and these results likely overestimate the effectiveness
of protection. This is because the fault injection does not
capture many upsets that COAST cannot fix, such as upsets
in the program counter, control-flow structures, or internal
processor state.

The experiment on the quicksort algorithm also confirmed
our hypothesis regarding algorithms that are inherently fault
tolerant. The TMR protection used by COAST provided a
greater benefit on the hash-checking version, which reported
an error whenever the simple XOR hash of the data detected
a bit mismatch. Whereas the version that only checked that
numbers were sorted (which could naturally mask upsets), did
not achieve the same improvement. The difference was a 141x
decrease in error rate versus 429x.

It is important to recognize that the fault tolerant version
still has a lower raw error rate, as it is more likely to mask
upsets. However, the improvement provided by protection is
not as significant. This is an important consideration for those

https://github.com/byuccl/coast
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Fig. 4: PACIFIC Fault Injection Framework

TABLE II: Fault Injection Results

Configuration
(Bench, Options) # Runs

Faults
(TMR
Fixed)

Errors
(SDC)

Hangs/
Invalid
Status

Error
Rate MWTF

Matrix Multiply

30x30, Unmit 4000 0 28 1/0 0.70% - -
30x30, TMR 35000 2473 20 126/1 0.06% ↓ 12.25x ↑ 3.42x

75x75, Unmit 1000 0 122 0/0 12.20% - -
75x75, TMR 58000 14964 20 49/3 0.03% ↓ 353.8x ↑ 84.81x

120x120, Unmit 1000 0 257 1/0 25.70% - -
120x120, TMR 116000 69276 20 74/2 0.02% ↓ 1490.6x ↑ 169.57x

180x180, Unmit 1000 0 490 1/0 49.00% - -
180x180, TMR 66000 53745 11 28/0 0.02% ↓ 2940x ↑ 910.29x

qsortLib

Check Sorted, Unmit 2000 0 39 2/0 1.95% - -
Check Sorted, TMR 217000 16276 30 279/1 0.01% ↓ 141.1x ↑ 60.2x

Check Hash, Unmit 1000 0 162 1/0 16.20% - -
Check Hash, TMR 53000 17110 20 106/0 0.04% ↓ 429.3x ↑ 265.58x

looking to protect algorithms that may already naturally mask
bit upsets, as the lower effectiveness offered by automated
fault protection may not be worth the runtime and memory
overheads.

VI. CONCLUSION

In this article we have presented radiation test results of
several benchmarks, tested both in their original form, and with
automated fault protection applied. The results demonstrate
that the effectiveness of automated protection varies greatly
from benchmark to benchmark, with cross-section improve-
ments ranging from 1.6x to 54x.

We analyzed several properties of the tested benchmarks
to determine where correlations exist between the benchmark
properties and the effectiveness of fault protection. While our
data set is limited, it appears that some important benchmark
characteristics include whether static or dynamic memory is
used, the size of the data sets, how often replicated data is

synchronized, and the inherent fault tolerance of the original
algorithm.

Finally, we isolated and validated two of these properties
(data size and inherent fault tolerance) through extensive fault
injection, leveraging our custom-designed QEMU-based fault
injection framework. In both cases the results validated what
was observed in our original radiation testing.

The results of this work demonstrate how variations in
algorithms and software workloads have a large impact on
the effectiveness of automated fault tolerance. We hope this
work will spur further exploration into improving automated
techniques for software reliability.
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